Implementasi Metode K-Means Untuk Memprediksi Status Kredit Macet
DOI:
https://doi.org/10.30865/json.v4i3.5953Keywords:
Data Mining, Clustering, Default Credit, Repeat Order, K-MeansAbstract
A credit card is one of the legal payment media owned by a bank in making a payment transaction within the agreed timeframe. In particular, credit services are provided by institutions or bodies that have the authority to distribute funds in the form of financial assistance to individuals and groups. However, in practice there are bound to be obstacles, especially during payback periods that often occur, such as when a customer wants to submit a Repeat Order or apply for funds again. Obstacles that are usually encountered in the process of granting credit are substandard credit and bad credit payments. Before PT Esta Dana Ventura wants to decide to approve applications for re-granting credit cards from prospective repeat order customers, a classification of assessment criteria is needed to determine the feasibility of granting credit to prospective repeat order customers. This study made the decision to use Data mining clustering classification with Rapidminer tools as a tool to obtain accurate results by processing data using the K-Means clustering method to help PT. Esta Dana Ventura in analyzing potential non-performing loans. By comparing survey data for Repeat Order candidates with previous credit granting data and classifying them in the form of bad or non-bad credit classifications.From the results of research using the k-means method it can produce grouping data into 3 criteria, namely (C0) 69 data with current customers, (C1) 3 data with very current customers, and (C2) 52 data with Bad customers..
References
F. D. S. Alhamdani, A. A. Dianti, and Y. Azhar, “Segmentasi Pelanggan Berdasarkan Perilaku Penggunaan Kartu Kredit Menggunakan Metode K-Means Clustering,†JISKA (Jurnal Inform. Sunan Kalijaga), vol. 6, no. 2, pp. 70–77, 2021, doi: 10.14421/jiska.2021.6.2.70-77.
N. Ahsina, F. Fatimah, and F. Rachmawati, “Analisis Segmentasi Pelanggan Bank Berdasarkan Pengambilan Kredit Dengan Menggunakan Metode K-Means Clustering,†J. Ilm. Teknol. Infomasi Terap., vol. 8, no. 3, 2022, doi: 10.33197/jitter.vol8.iss3.2022.883.
J. Hutagalung and F. Sonata, “Penerapan Metode K-Means Untuk Menganalisis Minat Nasabah,†J. Media Inform. Budidarma, vol. 5, no. 3, p. 1187, 2021, doi: 10.30865/mib.v5i3.3113.
M. S. Bagas Prasetia, Muhammad Syahril, M.Kom, Rini Kustini, S.S., “Prediksi Kredit Macet Melalui Prilaku Nasabah Pada Koperasi Simpan Pinjam Pada Pt Pemodalan Nasional Madani Dengan Menggunakan Metode Algoritma Klasifikasi C4.5,†CyberTech, vol. 10, no. x, pp. 1–10, 2020.
R. Limia Budiarti and G. Cendana, “Klasifikasi Data Nasabah Kredit Pinjaman Menggunakan Data Mining Dengan Metode K-Means Pada Mega Central Finance,†pp. 88–94, 2022.
A. Purnama, “Pemberian Kredit Kendaraan Bermotor Menggunakan Metode Fuzzy Logic Sugeno Pada PT . Bintang Mandiri Finance Bekasi,†vol. I, no. 1, 2022.
E. D. S. Mulyani, A. Rihadisha, and ..., “Klasifikasi Penentuan Kelayakan Pemberian Kredit Menggunakan Metode Naive Bayes Classifier (Studi Kasus: Koperasi Simpan Pinjam Simpenan Pameungkeut …,†J. VOI (Voice …, vol. 6, pp. 391–404, 2020, [Online]. Available: https://voi.stmik-tasikmalaya.ac.id/index.php/voi/article/view/226
M. R. Fahlevi, D. Ridha, D. Putri, and E. Syahrin, “Analisis Pengelompokan Data Pelelangan Barang Dengan Metode K-Means Clustering,†vol. 8, pp. 53–61, 2023.
N. S. H. Pratama, D. T. Afandi, M. Mulyawan, I. Iin, and N. D. Nuris, “Menurunkan Presentase Kredit Macet Nasabah Dengan Menggunakan Algoritma K-Nearest Neighbor,†Inf. Syst. Educ. Prof. J. Inf. Syst., vol. 5, no. 2, p. 131, 2021, doi: 10.51211/isbi.v5i2.1537.
A. Al Essa and C. Bach, “Data Mining and Knowledge Management for Marketing,†Int. J. Innov. Sci. Res. ISSN, vol. 2, no. 2, pp. 321–328, 2014, [Online]. Available: http://www.ijisr.issr-journals.org/
A. Triayudi, “Implementasi Klasifikasi Data Mining Untuk Penentuan Kelayakan Pemberian Kredit dengan Menggunakan Algoritma Naïve Bayes,†J. Sist. Komput. dan Inform. Hal 240−, vol. 244, no. 1, pp. 240–244, 2022, doi: 10.30865/json.v4i1.4653.
S. R. Prabowo Budi Utomo, Ema Utami, “P Rogram S Tudi D Oktor,†Pemodelan Arsit. Sist. Inf. Perizinan Menggunakan Kerangka Kerja Togaf Adm, vol. 4, no. 1, p. (halaman 2), 2018.
M. R. Nahjan, N. Heryana, A. Voutama, F. I. Komputer, U. S. Karawang, and R. Miner, “IMPLEMENTASI RAPIDMINER DENGAN METODE CLUSTERING K-MEANS UNTUK ANALISA PENJUALAN PADA TOKO OJ CELL,†vol. 7, no. 1, pp. 101–104, 2023.
I. N. M. Adiputra, “Clustering Penyakit Dbd Pada Rumah Sakit Dharma Kerti Menggunakan Algoritma K-Means,†Inser. Inf. Syst. Emerg. Technol. J., vol. 2, no. 2, p. 99, 2022, doi: 10.23887/insert.v2i2.41673.
R. Lodewyk and K. Maturbongs, “KMeans Clustering Menggunakan RapidMiner dalam Segmentasi Pelanggan dengan Evaluasi Davies Bouldin Index Untuk Menentukan Jumlah Cluster Paling Optimal ( Tugas E-Business Technology ),†vol. 6, no. 2, pp. 8–13, 2023.
S. N. Br Sembiring, H. Winata, and S. Kusnasari, “Pengelompokan Prestasi Siswa Menggunakan Algoritma K-Means,†J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 1, no. 1, p. 31, 2022, doi: 10.53513/jursi.v1i1.4784.
R. Hasibuan Budiansyah, H. Hafizah, and R. Mahyuni, “Penerapan Data Mining Clustering Dengan Menggunakan Algoritma K-Means Pada Data Nasabah Kredit Bermasalah PT. BPR Milala,†J-SISKO TECH (Jurnal Teknol. Sist. Inf. dan Sist. Komput. TGD), vol. 5, no. 1, p. 7, 2022, doi: 10.53513/jsk.v5i1.4767.
H. Prastiwi, J. Pricilia, and E. Raswir, “Implementasi Data Mining Untuk Menentuksn Persediaan Stok Barang Di Mini Market Menggunakan Metode K-Means Clustering Jurnal Informatika Dan Rekayasa Komputer ( JAKAKOM ),†J. Inform. Dan Rekayasa Komput., vol. 1, no. April, pp. 141–148, 2022.
R. Fitra and I. Rusdi, “Penerapan Metode Algoritma K-Nearest Neighbor Menggunakan Rapidminer Studio Pada Klasifikasi Status Sosial Ekonomi Studi Kasus: Kelurahan Kapuk Muara Rt …,†Smart Comp Jurnalnya Orang Pint. …, pp. 653–660, 2022, [Online]. Available: http://ejournal.poltektegal.ac.id/index.php/smartcomp/article/view/4250
F. Teknologi and I. Dan, “SURAT TUGAS No . 009 / ST / Dek / FTIB / X / 2022,†no. 0274, 2023.
S. Dwididanti and D. A. Anggoro, “Analisis Perbandingan Algoritma Bisecting K-Means dan Fuzzy C-Means pada Data Pengguna Kartu Kredit,†Emit. J. Tek. Elektro, vol. 22, no. 2, pp. 110–117, 2022, doi: 10.23917/emitor.v22i2.15677.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).

