Klasifikasi Sentiment Ulasan Aplikasi Sausage Man Menggunakan VADER Lexicon dan Naïve Bayes Classifier

M Ikhsan Maulana, Elvia Budianita, Muhammad Fikry, Febi Yanto

Abstract


Battle Royale games are games that mix adventure and survival elements with last man standing game modes. One of the most popular battle royale games is the Sausage Man game. The number of complaints such as bugs, cheaters, and FPS which continues to decrease makes the game annoying. The solution is that developers must improve and improve game security so that users feel comfortable playing the game. There are many opinions or reviews from users regarding problems in the game, sentiment analysis will be carried out on the Sausage Man application review data on the Google play store as a process to produce categorization of opinions through reviews. The purpose of the researcher is to carry out a sentiment analysis to see positive, neutral or negative opinions from Sausage Man game users. The stages carried out in this study were data collection using web scraping, data labeling, text preprocessing, document weighting, classification, and evaluation. The results of data labeling using the VADER Lexicon obtained 1089 reviews (36.3%) for positive sentiment, 912 reviews for neutral sentiment (30.4%), and 999 reviews for negative sentiment (33.3%). Classification using the Naïve Bayes Classifier. Evaluation using the Confusion Matrix by dividing 90% training data and 10% test data produces an accuracy of 75%, 79% precision, and 75% recall. For the division of 80% training data 20% of the test data produces an accuracy of 73%, 76% precision and 73% recall. Positive sentences are found more often, but the accuracy is still below 80%.


Keywords


Game; Battle Royale; Sausage Man; Sentiment Analysis; Classification

Full Text:

PDF

References


Y. Asri, W. N. Suliyanti, D. Kuswardani, dan M. Fajri, “Pelabelan Otomatis Lexicon Vader dan Klasifikasi Naive Bayes dalam menganalisis sentimen data ulasan PLN Mobile,†vol. 15, no. 2, hal. 264–275, 2022.

J. Watori, R. Aryanti, dan A. Junaidi, “Penggunaan Algoritma Klasifikasi Terhadap Analisa Sentimen Pemindahan Ibukota Dengan Pelabelan Otomatis,†J. Inform., vol. 7, no. 1, hal. 85–90, 2020.

R. Y. Lesmana dan R. Andarsyah, “Model Klasifikasi Multinomial Naive Bayes Untuk Analisis Sentiment Terkait Non-Fungible Token,†J. Tek. Inform., vol. 14, no. 3, hal. 135–139, 2022.

S. Pamungkas dan J. B. B. Darmawan, “Klasifikasi Sentiment Tweet Pelanggan IndiHome Selama Pandemi Covid-19 Menggunakan Algoritma Multinomial Naive Bayes,†SNESTIK, hal. 339–344, 2022.

M. G. T. Akbar dan D. B. Srisulistiowati, “Analisa Sentimen Efektifitas Vaksin terhadap Varian COVID 19 Omicron Berbasis Leksikon,†J. Inf. Inf. Secur., vol. 2, no. 2, hal. 251–258, 2021.

E. A. Marwa dan A. B. Kristanto, “Analisis Sentimen Pengungkapan Informasi Manajemen : Text Mining Berbasis Metode VADER,†Own. Ris. J. Akunt., vol. 6, hal. 2973–2984, 2022.

W. Parasati, F. A. Bachtiar, dan N. Y. Setiawan, “Analisis Sentimen Berbasis Aspek pada Ulasan Pelanggan Restoran Bakso President Malang dengan Metode Naive Bayes Classifier,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 4, hal. 1090–1099, 2020.

N. S. Wardani, A. Prahutama, dan P. Kartikasari, “Analisis Sentimen Pemindahan Ibu Kota Negara dengan Klasifikasi Naive Bayes untuk Model Bernoulli dan Multinomial,†J. Gaussian, vol. 9, hal. 237–246, 2020.

G. Sanjaya dan K. M. Lhaksmana, “Analisis Sentimen Komentar YouTube tentang Terpilihnya Menteri Kabinet Indonesia Maju Menggunakan Lexicon Based,†e-Proceeding Eng., vol. 7, no. 3, hal. 9698–9710, 2020.

L. Ardiani, H. Sujaini, dan Tursina, “Implementasi Sentiment Analysis Tanggapan Masyarakat Terhadap Pembangunan di Kota Pontianak,†J. Sist. dan Teknol. Inf., vol. 8, no. 2, hal. 183–190, 2020, doi: 10.26418/justin.v8i2.36776.

N. Herlinawati, Y. Yuliani, S. Faizah, W. Gata, dan Samudi, “Analisis Sentimen Zoom Cloud Meetings di Play Store menggunakan Naive Bayes dan Support Vector Machine,†J. Comput. Eng. Syst. Sci., vol. 5, no. 2, hal. 293–298, 2020.

A. Deolika, Kusrini, dan E. T. Luthfi, “Analisis Pembobotan Kata pada Klasifikasi Text Mining,†J. Teknol. Inf., vol. 3, no. 2, hal. 179–184, 2019.

M. R. Fahlevvi, “Analisis Sentimen Terhadap Ulasan Aplikasi Pejabat Pengelola Informasi dan Dokumentasi Kementerian Dalam Negeri Republik Indonesia di Google Playstore Menggunakan Metode Support Vector Machine,†J. Teknol. dan Komun. Pemerintah., vol. 4, no. 1, hal. 1–13, 2022.

R. A. R. Wiguna dan A. I. Rifai, “Analisis Text Clustering Masyarakat Di Twitter Mengenai Omnibus Law Menggunakan Orange Data Mining,†J. Inf. Syst. Informatics, vol. 3, no. 1, hal. 1–12, 2021.

E. Fitri, Y. Yuliani, S. Rosyida, dan W. Gata, “Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes , Random Forest Dan Support Vector Machine,†TRANSFORMTIKA, vol. 18, no. 1, hal. 71–80, 2020.

D. N. Chandra, G. Indrawan, dan I. N. Sukajaya, “Klasifikasi Berita Lokal Radar Malang Menggunakan Metode Naive Bayes dengan Fitur N-Gram,†J. Ilmu Komput. Indones., vol. 4, no. 2, 2019.

O. S. D. Silaen, Herlawati, dan Rasim, “Analisis Sentimen Mengenai Gangguan Bipolar Pada Twitter Menggunakan Algoritma Naive Bayes,†J. Komtika (Komputasi dan Inform., vol. 6, no. 2, hal. 63–73, 2022.

T. T. Widowati, “Analisis Sentimen Twitter terhadap Tokoh Republik dengan Algoritma Naive Bayes dan Support Vector Machine,†J. SIMETRIS, vol. 11, no. 2, 2020.




DOI: https://doi.org/10.30865/json.v4i3.5854

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 M Ikhsan Maulana, Elvia Budianita, Muhammad Fikry, Febi Yanto

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Sistem Komputer dan Informatika (JSON)
Dikelola oleh Universitas Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : lppm.ubd@gmail.com


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.