Klasifikasi Sentimen Tragedi Kanjuruhan Pada Twitter Menggunakan Algoritma Naïve Bayes

Authors

  • Iqbal Salim Thalib Universitas Islam Negeri Sultan Syarif Kasim, Pekanbaru
  • Siska Kurnia Gusti Universitas Islam Negeri Sultan Syarif Kasim, Pekanbaru
  • Febi Yanto Universitas Islam Negeri Sultan Syarif Kasim, Pekanbaru
  • Muhammad Affandes Universitas Islam Negeri Sultan Syarif Kasim, Pekanbaru

DOI:

https://doi.org/10.30865/json.v4i3.5852

Keywords:

Classification, Multinomial Naïve Bayes, Sentiment, Kanjuruhan Tragedy, Twitter

Abstract

The Kanjuruhan Malang incident occurred on October 1 and resulted in 132 deaths, 96 serious injuries and 484 minor injuries. The cause of the riot occurred due to provocation between Arema Malang supporters and Persebaya Surabaya supporters who mentioned harsh words and other provocative actions that caused anger on both sides. Sentiment analysis of the Kanjuruhan tragedy using the Naive Bayes method was conducted through tweets taken through Twitter to understand the public's perception of the incident. The Naïve Bayes algorithm is performed for the sentiment classification of tweet data which is applied by processing the tweet text and classifying it into positive, negative, and neutral. In this study using data as much as 4843 data and carried out with tweet data that has been crawled resulting in 2,042 data. This research aims to classify sentiment and determine the level of accuracy in the Multinomial Naïve Bayes algorithm in the Kanjuruhan tragedy using a dataset in the form of tweets from twitter social media. The processed tweet data is divided into two types, namely 90% training data and 10% test data.  The results of this classification get a Naïve Bayes accuracy of 75% with a precission of 73%, recall of 75%, and f1-score value of 74%. The results of the tweet data used in this study can be concluded that the Naïve Bayes algorithm has a fairly good accuracy value.

References

T. Prasetyo, H. Zakaria, and P. Wiliantoro, “Analisis Layanan Pelanggan PT PLN Berdasarkan Media Sosial Twitter Dengan Menggunakan Metode Naïve Bayes Classifier,†OKTAL : Jurnal Ilmu Komputer dan Sains, vol. 1, no. 06, pp. 573–582, 2022, [Online]. Available: https://journal.mediapublikasi.id/index.php/oktal

W. P. Anggraini and M. S. Utami, “Klasifikasi Sentimen Masyarakat Terhadap Kebijakan Kartu Prakerja di Indonesia,†Faktor Exacta, vol. 13, no. 4, p. 255, Feb. 2021, doi: 10.30998/faktorexacta.v13i4.7964.

S. Tualeka, F. Alameka, and N. Wanti Wulan Sari, “Implementasi Data Mining Untuk Memprediksi Penjualan Dan Penempatan Stok Barang Pada Cv Pasti Jaya Houseware Menggunakan Algoritma Apriori,†SEMINASTIKA, vol. 3, no. 1, pp. 115–123, Nov. 2021, doi: 10.47002/seminastika.v3i1.258.

S. Anastassia Amellia Kharis and A. Haqqi Anna Zili, “Learning Analytics dan Educational Data Mining pada Data Pendidikan,†Jurnal Riset Pembelajaran Matematika Sekolah, vol. 6, 2022.

M. Rianto, R. Rusdiah, and H. Ichwan, “Penerapan Data Mining Dengan Metode Naïve Bayes Dan Learning Vector Quantization Credit Rating Dalam Memprediksi Kelayakan Pemberian Kredit Oleh PT. BPR Lebak Sejahtera,†Jurnal Teknologi Informasi, vol. 1, 2022.

N. D. Ramadhani, “ANALISIS KINERJA ALGORITMA NAÃVE BAYES,†2019.

Mihuandayani, E. Feriyanto, Syarham, and Kusrini, “Opinion Mining Pada Komentar Twitter E-KTP Menggunakan Naive Bayes Classifier,†Seminar Nasional Teknologi Informasi dan Multimedia , 2018.

N. Ruhyana, “Analisis Sentimen Terhadap Penerapan Sistem Plat Nomor Ganjil/Genap Pada Twitter Dengan Metode Klasifikasi Naive Bayes,†Jurnal IKRA-ITH Informatika, vol. 3, no. 1, 2019, [Online]. Available: www.situs.com

T. Ansyor Lorosae and B. Dwi Prakoso, “Analisis Sentimen Berdasarkan Opini Masyarakat Pada Twitter Menggunakan Naive Bayes,†UNIVERSITAS AMIKOM Yogyakarta, 2018.

R. Fajar, S. Program, P. Rekayasa, N. Lunak, and R. Bengkalis, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,†JURNAL INOVTEK POLBENG -SERI INFORMATIKA, vol. 3, no. 1, 2018.

Y. Nurtikasari, Syariful Alam, and Teguh Iman Hermanto, “Analisis Sentimen Opini Masyarakat Terhadap Film Pada Platform Twitter Menggunakan Algoritma Naive Bayes,†INSOLOGI: Jurnal Sains dan Teknologi, vol. 1, no. 4, pp. 411–423, Aug. 2022, doi: 10.55123/insologi.v1i4.770.

F. Rozy, S. Rangkuti, M. A. Fauzi, Y. A. Sari, E. Dewi, and L. Sari, “Analisis Sentimen Opini Film Menggunakan Metode Naïve Bayes dengan Ensemble Feature dan Seleksi Fitur Pearson Correlation Coefficient,†Jurnal Pengembangan TeknologiInformasi dan Ilmu Komputer, vol. 2, no. 12, pp. 6354–6361, 2018, [Online]. Available: http://j-ptiik.ub.ac.id

D. Setian and I. Seprina, “Analisis Sentimen Masyarakat Terhadap Data Tweet Lazada Menggunakan Text Mining Dan Algoritma Naive Bayes Classifier,†Bina Darma Conference on Computer Science, 2019.

W. A. Prabowo and C. Wiguna, “Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19Menggunakan Metode Naïve Bayes,†JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 1, p. 149, Jan. 2021, doi: 10.30865/mib.v5i1.2604.

G. A. Buntoro, “Analisis sentimen Calon Gubernur Jawa Timur 2018 Dengan Metode Naive Bayes Classifier,†Journal Of Informatics Pelita Nusantara, vol. 4, no. 1, 2019.

L. Septiani and Y. Sibaroni, “Sentiment Analysis Terhadap Tweet Bernada Sarkasme Berbahasa Indonesia,†2019. [Online]. Available: https://twitter.com/hipwee/status/734249192273645568?y

A. H. Ruger, S. Analisis, P. Shopee, M. Suyanto, and M. P. Kurniawan, “Sentimen Analisis Pelanggan Shopee di Twitter menggunakan Algoritma Naive Bayes,†JIFOTECH (JOURNAL OF INFORMATION TECHNOLOGY, vol. 1, no. 2, 2021.

O. Somantri, “Analisis Sentimen Penilaian Tempat Tujuan Wisata Kota Tegal Berbasis Text Mining,†JEPIN (Jurnal Edukasi dan Penelitian Informatika) , vol. 5, no. 2, 2019, [Online]. Available: www.google.com/maps

D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes untuk Analisis Sentimen Review Data Twitter BMKG Nasional,†Jurnal TEKNO KOMPAK, vol. 15, no. 1, 2021.

B. Mas Pintoko and K. Muslim, “Analisis Sentimen Jasa Transportasi Online pada Twitter Menggunakan Metode Naïve Bayes Classifier,†e-Proceeding of Engineering, 2018.

S. Sandino Berutu, “Text Mining dan Klasifikasi Sentimen Berbasis Naïve Bayes Pada Opini Masyarakat terhadap Makanan Tradisional,†Jurnal Sistem Komputer dan Informatika (JSON) Hal: 254−, vol. 262, no. 2, 2022, doi: 10.30865/json.v4i2.5138.

Downloads

Published

2023-03-31

How to Cite

Thalib, I. S., Gusti, S. K., Yanto, F., & Affandes, M. (2023). Klasifikasi Sentimen Tragedi Kanjuruhan Pada Twitter Menggunakan Algoritma Naïve Bayes. Jurnal Sistem Komputer Dan Informatika (JSON), 4(3), 467–473. https://doi.org/10.30865/json.v4i3.5852

Issue

Section

Articles