Implementasi Data Mining Memprediksi Penjualan Crude Palm Oil Berdasarkan Kapasitas Tangki Menggunakan Multiple Linear Regression

Authors

  • Ana Komaria Baskara Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru
  • Alwis Nazir Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru
  • Muhammad Irsyad Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru
  • Yusra Yusra Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru
  • Fitri Insani Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru

DOI:

https://doi.org/10.30865/json.v4i3.5665

Keywords:

Data Mining, Prediction, Crude Palm Oil (CPO), Despatches, Multiple Linear Regression

Abstract

Data mining is a process of discovering information from data that can be used to improve business, product development, and other decision-making processes. One application of data mining is in PT. Kerry Sawit Indonesia, which is an agribusiness company in the Wilmar Group that deals with processing crude palm oil (CPO). Sales of CPO are crucial for palm oil plantation companies. To increase efficiency and profitability, palm oil plantation companies can predict CPO sales to optimize sales and CPO inventory. One method that can be used to predict CPO sales is through data mining techniques. In this study, the data mining technique used is multiple linear regression. Multiple linear regression is used to determine the relationship between the tank capacity variable and CPO sales. The data used in this study are CPO production data, CPO sales data, and tank capacity data obtained from palm oil plantation companies over the last five years. The results of the Multiple Linear Regression calculation in this case study show that the coefficient of determination (R-squared) value is 0.9546, indicating that 95.46% of the CPO delivery variability can be explained by the independent variables. Additionally, the MAPE and RMSE tests show that the regression model obtained has good accuracy in predicting CPO deliveries. Therefore, this regression model can be used to predict CPO deliveries in the future, considering the predetermined independent variable values.

References

A. F. Boy, “Journal of Science and Social Research ISSN 2615 – 3262 ( Online ) Available online at http://jurnal.goretanpena.com/index.php/JSSR Implementasi Data Mining Dalam Memprediksi Harga Crude Palm Oil ( CPO ) Pasar Domestik Menggunakan Algoritma Regresi Linier,†vol. 4307, no. August, pp. 78–85, 2020.

Suparyanto dan Rosad (2015, “済無No Title No Title No Title,†Suparyanto dan Rosad (2015, vol. 5, no. 3, pp. 248–253, 2020.

H. Heryani and A. Nugroho, CCP dan Cp Pada Proses Pengolahan CPO dan CPKO. 2013.

E. Baharudin et al., “Seleksi Proses Dan Penentuan Kapasitas Produksi Industri Sabun Cair Berbahan Baku Crude Palm Oil (Cpo),†Distilat J. Teknol. Separasi, vol. 7, no. 2, pp. 127–132, 2021, doi: 10.33795/distilat.v7i2.201.

R. A. Renjani, R. Sugiarto, and N. D. Dharmawati, “Pengamatan Kualitas Cpo Pada Storage Tank Dengan Penambahan Sistem Pengadukan Pada Berbagai Variasi Temperatur,†J. Tek. Pertan. Lampung (Journal Agric. Eng., vol. 9, no. 4, p. 343, 2020, doi: 10.23960/jtep-l.v9i4.343-352.

A. Rohman and A. Rufiyanto, “Implementasi Data Mining Dengan Algoritma Decision Tree C4 . 5 Untuk Prediksi Kelulusan Mahasiswa Di Universitas Pandaran,†Proceeding SINTAK 2019, pp. 134–139, 2019.

M. Lase, D. Saripurna, and V. W. Sari, “Estimasi Penjualan Ice Cream Walls Menggunakan Metode Regresi Linear Berganda,†J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 1, no. 5, p. 625, 2022, doi: 10.53513/jursi.v1i5.5146.

N. Rusmilawati and ..., “Penerapan Data Mining Dalam Prediksi Hasil Produksi Kelapa Sawit PT Borneo Ketapang Indah Menggunaka Metode Linier Regression,†J. …, vol. 1, pp. 1–7, 2021, [Online]. Available: http://jisai.mercubuana-yogya.ac.id/index.php/jisai/article/view/33%0Ahttp://jisai.mercubuana-yogya.ac.id/index.php/jisai/article/download/33/10

A. Azanuddin and A. Calam, “Data Mining Untuk Memprediksi Penjualan Buah Sawit Menggunakan Metode Multi Regresi Pada PT.Karya Hevea Indonesia,†no. x, 2020.

O. Hikmawan, M. Naufa, and A. Nainggolan, “Pengaruh Lama Penyimpanan Pada Storage Tank Terhadap Mutu CPO Di Pabrik Kelapa Sawit,†J. Tek. dan Teknol., vol. 14, no. 28, p. 2199001, 2019.

K. Pengantar, “1 | M o d ul P erk ulia ha n Da ta Mini ngâ€.

A. Fitri Boy, “Implementasi Data Mining Dalam Memprediksi Harga Crude Palm Oil (CPO) Pasar Domestik Menggunakan Algoritma Regresi Linier Berganda (Studi Kasus Dinas Perkebunan Provinsi Sumatera Utara),†J. Sci. Soc. Res., vol. 4307, no. 2, pp. 78–85, 2020, [Online]. Available: http://jurnal.goretanpena.com/index.php/JSSR

A. Prasetyo, Salahuddin, and Amirullah, “Prediksi Produksi Kelapa Sawit Menggunakan Metode Regresi Linier Berganda,†J. Infomedia Tek. Inform. Multimed. Jar., vol. 6, no. 2, pp. 76–80, 2021, [Online]. Available: http://e-jurnal.pnl.ac.id/infomedia/article/view/2343

Hendra Di Kesuma, D. Apriadi, H. Juliansa, and E. Etriyanti, “Implementasi Data Mining Prediksi Mahasiswa Baru Menggunakan Algoritma Regresi Linear Berganda,†J. Ilm. Bin. STMIK Bina Nusant. Jaya Lubuklinggau, vol. 4, no. 2, pp. 62–66, 2022, doi: 10.52303/jb.v4i2.74.

H. Guerrero, “Excel Data Analysis Modeling and Simulation,†vol. 6, pp. 0–3.

M. H R and P. V N, “Impact of Climatological Parameters on Reference Crop Evapotranspiration Using Multiple Linear Regression Analysis,†Int. J. Civ. Eng., vol. 2, no. 1, pp. 21–24, 2015, doi: 10.14445/23488352/ijce-v2i1p103.

T. Indarwati, T. Irawati, and E. Rimawati, “Penggunaan Metode Linear Regression Untuk Prediksi Penjualan Smartphone,†J. Teknol. Inf. dan Komun., vol. 6, no. 2, pp. 2–7, 2019, doi: 10.30646/tikomsin.v6i2.369.

R. Puspasari, S. Effendi, H. Kurniawan, M. Ayoe, and E. Nasution, “Penentuan Prediksi Hasil Panen Kelapa Sawit Menggunakan Metode Regresi Linier,†vol. 4, pp. 91–98, 2022.

Downloads

Published

2023-03-31

How to Cite

Baskara, A. K., Nazir, A., Irsyad, M., Yusra, Y., & Insani, F. (2023). Implementasi Data Mining Memprediksi Penjualan Crude Palm Oil Berdasarkan Kapasitas Tangki Menggunakan Multiple Linear Regression. Jurnal Sistem Komputer Dan Informatika (JSON), 4(3), 493–502. https://doi.org/10.30865/json.v4i3.5665

Issue

Section

Articles