Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Pada Analisis Sentimen Spotify

Authors

  • Ayu Sri Rahayu Universitas Buana Perjuangan Karawang, Karawang
  • Ahmad Fauzi Universitas Buana Perjuangan Karawang, Karawang
  • Rahmat Rahmat Universitas Buana Perjuangan Karawang, Karawang

DOI:

https://doi.org/10.30865/json.v4i2.5398

Keywords:

SVM, Naïve Bayes, Sentiment Analysis

Abstract

The Spotify app is a subject of interest to social networking communities with significant disagreements or sentiments. Sentiment Analysis is a solution to automatically categorize opinions or ratings into negative or positive opinions. The techniques used in this research are Support Vector Machines (SVM) and Naïve Baye. The advantages of Naïve Bayes are simple, fast and high accuracy. SVM, on the other hand, can identify different hyperplanes that maximize the margin between two different classes. The classification results of this study have two category labels, namely negative and positive. The resulting accuracy value indicates the best test model for sentiment classification cases. Accuracy is measured by the confusion matrix and the results show that the accuracy value of the SVM algorithm is 84% while the accuracy value of the Naïve Bayes algorithm is higher than SVM which is 86.4%.

References

R. Kusumah, M. Ariyanti dan S. , “ANALIS PERBANDINGAN POSITIONING APLIKASI MUSIK DIGITAL,†e-Proceeding of Management, p. 2511, 2017.

L. Zhang, K. Hua, ,. Wang dan G. Qian, “Sentiment Analysis on Reviews of Mobile Users,†Procedia Computer Science, p. 458 – 465, 2014.

M. D. Rhajendra dan N. Trianasar, “Analisis Sentimen Ulasan Aplikasi Spotify Untuk Peningkatan Layanan Menggunakan,†e-Proceeding of Management, vol. 8, p. 4367, 2021.

A. S. H. Basari, G. Pramudya dan B. Hussin, “Opinion Mining of Movie Review using Hybrid Method of Support,†Procedia Engineering, p. 453 – 462, 2013.

W. Medhat, A. Hassan dan H. Korashy, “Sentiment analysis algorithms and applications:,†ELECTRICAL ENGINEERING, 2014.

L. Nurhalimah, T. I. Hermanto dan I. Kaniawulan, “Analisis Prediksi Mood Genre Musik Pop Menggunakan Algoritma,†JURIKOM (Jurnal Riset Komputer), vol. 9, p. 1006−1013, 2022.

S. Navisa, L. Hakim dan A. Nabilah, “Komparasi Algoritma Klasifikasi Genre Musik,†Jurnal Sistem Cerdas, vol. 04, pp. 114 - 125, 2021.

A. T. Rian Dani, V. Ratnasari, L. Ni’matuzzahroh, I. . C. Aviantholib, R. Novidianto dan N. Y. Adrianingsih, “ANALISIS KLASIFIKASI ARTIST MUSIC MENGGUNAKAN MODEL,†JAMBURA JOURNAL OF PROBABILITY AND STATISTICS, vol. 3, 2022.

L. B. Christina Tanujayaa, B. Susanto dan A. Saragiha, “Perbandingan Metode Regresi Logistik dan Random Forest,†Indonesian Journal of Data and Science (IJODAS), vol. 3, pp. 68-78, 2020.

S. Diantika, W. Gata dan H. Nalatissifa, “Komparasi Algoritma SVM Dan Naive Bayes Untuk Klasifikasi,†JURNAL ILMIAH ELEKTRONIKA DAN KOMPUTER, vol. 14, p. 10, 2021.

Downloads

Published

2022-12-31

How to Cite

Rahayu, A. S., Fauzi, A., & Rahmat, R. (2022). Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Pada Analisis Sentimen Spotify. Jurnal Sistem Komputer Dan Informatika (JSON), 4(2), 349–354. https://doi.org/10.30865/json.v4i2.5398