Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Pada Analisis Sentimen Spotify
DOI:
https://doi.org/10.30865/json.v4i2.5398Keywords:
SVM, Naïve Bayes, Sentiment AnalysisAbstract
The Spotify app is a subject of interest to social networking communities with significant disagreements or sentiments. Sentiment Analysis is a solution to automatically categorize opinions or ratings into negative or positive opinions. The techniques used in this research are Support Vector Machines (SVM) and Naïve Baye. The advantages of Naïve Bayes are simple, fast and high accuracy. SVM, on the other hand, can identify different hyperplanes that maximize the margin between two different classes. The classification results of this study have two category labels, namely negative and positive. The resulting accuracy value indicates the best test model for sentiment classification cases. Accuracy is measured by the confusion matrix and the results show that the accuracy value of the SVM algorithm is 84% while the accuracy value of the Naïve Bayes algorithm is higher than SVM which is 86.4%.References
R. Kusumah, M. Ariyanti dan S. , “ANALIS PERBANDINGAN POSITIONING APLIKASI MUSIK DIGITAL,†e-Proceeding of Management, p. 2511, 2017.
L. Zhang, K. Hua, ,. Wang dan G. Qian, “Sentiment Analysis on Reviews of Mobile Users,†Procedia Computer Science, p. 458 – 465, 2014.
M. D. Rhajendra dan N. Trianasar, “Analisis Sentimen Ulasan Aplikasi Spotify Untuk Peningkatan Layanan Menggunakan,†e-Proceeding of Management, vol. 8, p. 4367, 2021.
A. S. H. Basari, G. Pramudya dan B. Hussin, “Opinion Mining of Movie Review using Hybrid Method of Support,†Procedia Engineering, p. 453 – 462, 2013.
W. Medhat, A. Hassan dan H. Korashy, “Sentiment analysis algorithms and applications:,†ELECTRICAL ENGINEERING, 2014.
L. Nurhalimah, T. I. Hermanto dan I. Kaniawulan, “Analisis Prediksi Mood Genre Musik Pop Menggunakan Algoritma,†JURIKOM (Jurnal Riset Komputer), vol. 9, p. 1006−1013, 2022.
S. Navisa, L. Hakim dan A. Nabilah, “Komparasi Algoritma Klasifikasi Genre Musik,†Jurnal Sistem Cerdas, vol. 04, pp. 114 - 125, 2021.
A. T. Rian Dani, V. Ratnasari, L. Ni’matuzzahroh, I. . C. Aviantholib, R. Novidianto dan N. Y. Adrianingsih, “ANALISIS KLASIFIKASI ARTIST MUSIC MENGGUNAKAN MODEL,†JAMBURA JOURNAL OF PROBABILITY AND STATISTICS, vol. 3, 2022.
L. B. Christina Tanujayaa, B. Susanto dan A. Saragiha, “Perbandingan Metode Regresi Logistik dan Random Forest,†Indonesian Journal of Data and Science (IJODAS), vol. 3, pp. 68-78, 2020.
S. Diantika, W. Gata dan H. Nalatissifa, “Komparasi Algoritma SVM Dan Naive Bayes Untuk Klasifikasi,†JURNAL ILMIAH ELEKTRONIKA DAN KOMPUTER, vol. 14, p. 10, 2021.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).

