Analisis Sentimen Terhadap Program Kampus Merdeka Menggunakan Naive Bayes Dan Support Vector Machine
DOI:
https://doi.org/10.30865/json.v4i2.5381Keywords:
Sentiment Analysis, Merdeka Campus, SVM, Naive Bayes, ClassificationAbstract
In order to prepare students to face the rapid development of technology, changes in work life and skills, students must be better prepared to face the progress of the times. Universities must be able to carry out innovative learning processes so that students achieve optimal learning outcomes which include aspects of knowledge, skills and attitudes. So the MBKM program was launched to answer these demands. However, MBKM has pros and cons in its implementation, so it is necessary to analyze and evaluate policies to improve performance through feedback from the public by conducting sentiment analysis of MBKM policies on twitter users from 2019 to 2022 with the hashtag #kampusmerdeka. This study used the Naïve Bayes and SVM algorithms to determine accuracy based on sentiment classification. The data used 1118 data with positive sentiment 618 data and negative sentiment 500 data. This study resulted in an accuracy of 86%, precision of 87% and recall of 80% with testing data using the Naïve Bayes algorithm. Then using the linear kernel SVM algorithm with the same testing data resulted in accuracy of 93%, precision of 100% and recall of 84%. Therefore, it is important to conduct studies to improve the MBKM program so that its implementation is clearly in accordance with existing procedures.References
J. S. Komputer et al., “Analisis Sentimen Menggunakan Metode Naive Bayes Berbasis Particle Swarm Optimization Terhadap Pelaksanaan Program Merdeka Belajar Kampus Merdeka,†vol. 6, no. September, pp. 916–930, 2022.
S. J. Pipin and H. Kurniawan, “Analisis Sentimen Kebijakan MBKM Berdasarkan Opini Masyarakat di Twitter Menggunakan LSTM,†vol. 23, no. 2, pp. 197–208, 2022.
P. D. P. Silitonga, I. Sri Morina, M. Hasibuan, and U. Lestari, “Analisis Sentimen Kampus Merdeka Menggunakan Machine Learning,†J. ICT Inf. Commun. Technol., vol. 21, no. 1, pp. 39–43, 2022.
R. Gunawan, R. Septiadi, F. Apri Wenando, H. Mukhtar, and Syahril, “K-Nearest Neighbor (KNN) untuk Menganalisis Sentimen terhadap Kebijakan Merdeka Belajar Kampus Merdeka pada Komentar Twitter,†J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 2, pp. 152–158, 2022, doi: 10.37859/coscitech.v3i2.3841.
D. F. Zhafira, B. Rahayudi, and I. Indriati, “Analisis Sentimen Kebijakan Kampus Merdeka Menggunakan Naive Bayes dan Pembobotan TF-IDF Berdasarkan Komentar pada Youtube,†J. Sist. Informasi, Teknol. Informasi, dan Edukasi Sist. Inf., vol. 2, no. 1, pp. 55–63, 2021, doi: 10.25126/justsi.v2i1.24.
A. Rozaq, Y. Yunitasari, K. Sussolaikah, E. Resty, N. Sari, and R. I. Syahputra, “Analisis Sentimen Terhadap Implementasi Program Merdeka Belajar Kampus Merdeka Menggunakan Naïve Bayes , K-Nearest Neighboars Dan Decision Tree,†J. Media Inform. Budidarma, vol. 6, no. April, pp. 746–750, 2022, doi: 10.30865/mib.v6i2.3554.
H. Tuhuteru, “Analisis Sentimen Masyarakat Terhadap Pembatasan Sosial Berksala Besar Menggunakan Algoritma Support Vector Machine,†vol. 4, no. 1, 2020.
M. D. Alkhussayid, “Implementasi Algoritma K-Nearest Neighbors Pada Penentuan Jurusan Siswa,†vol. 4, no. September, pp. 25–36, 2022, doi: 10.30865/json.v4i1.4759.
E. H. Harahap, L. Muflikhah, and B. Rahayudi, “Implementasi Algoritma Support Vector Machine ( SVM ) Untuk Penentuan Seleksi Atlet Pencak Silat,†vol. 2, no. 10, pp. 3843–3848, 2018.
B. Lampung, “DATA TWITTER KOMISI PEMBERANTASAN KORUPSI REPUBLIK INDONESIA,†vol. 7, no. 1, pp. 1–11, 2020.
F. Reviantika et al., “Analisis Klasifikasi SMS Spam Menggunakan Logistic Regression,†vol. 04, no. 03, pp. 155–160, 2021.
N. L. Chusna and M. S. Arif, “Klasifikasi SMS Spam Berbahasa Indonesia Menggunakan Algoritma Multinomial Naïve Bayes,†vol. 5, pp. 1316–1325, 2021, doi: 10.30865/mib.v5i4.3119.
F. D. Pramakrisna, F. D. Adhinata, N. Annisa, and F. Tanjung, “Aplikasi Klasifikasi SMS Berbasis Web Menggunakan Algoritma Logistic Regression Web-based Classifying SMS Application Using Logistic Regression Algorithm,†vol. 11, no. 2, pp. 90–97, 2022, doi: 10.34148/teknika.v11i2.466.



