Personality Detection of Twitter Social Media Users using the Support Vector Machine Method
DOI:
https://doi.org/10.30865/json.v4i2.5345Keywords:
Personality, BigFive, Social Media, Twitter, SVMAbstract
 Personality is a person's psychological tendency to carry out certain social behaviors, whether in the form of feelings, thoughts, attitudes and will or actions. Big Five is the most popular and widely used personality model, therefore this proposal uses the Big Five Personality model. In this technological era, humans interact using social media. One of the fastest growing social media is Twitter. Twitter is a social media used by all groups. Every human being has a different personality. Personality detectors are needed for employee recruitment to dig up information about the personality of prospective employees. So personality detection or BigFive Personality can be done through tweets that are shared on Twitter. With this, it is necessary to detect personality using the Support Vector Machine (SVM) method. From the results of the study, it was found that the maximum performance parameter combination in detecting personality on Twitter users was a combination of Linear parameters and C = 10 which obtained an accuracy of 0.979. The data used is the result of crawling on the Twitter site with 146 user usernames and 38853 tweets.
References
G. A. Buntoro, “Analisis Sentimen Hatespeech Pada Twitter Dengan Metode Naïve Bayes Classifier Dan Support Vector Machine,†J. Din. Inform., vol. 5, no. 2, pp. 1–13, 2016.
T. Tandera, Hendro, D. Suhartono, R. Wongso, and Y. L. Prasetio, “Personality Prediction System from Facebook Users,†Procedia Comput. Sci., vol. 116, pp. 604–611, 2017, doi: 10.1016/j.procs.2017.10.016.
S. Roccas, L. Sagiv, S. H. Schwartz, and A. Knafo, “The Big Five personality factors and personal values,†Personal. Soc. Psychol. Bull., vol. 28, no. 6, pp. 789–801, 2002, doi: 10.1177/0146167202289008.
D. Alita, Y. Fernando, and H. Sulistiani, “Implementasi Algoritma Multiclass Svm Pada Opini Publik Berbahasa Indonesia Di Twitter,†J. Tekno Kompak, vol. 14, no. 2, p. 86, 2020, doi: 10.33365/jtk.v14i2.792.
Alkatiri Bin Muhammad Awad, Nadiah Zhafira, and S. Nasution Nada Adinda, “Opini Publik Terhadap Penerapan New Normal Di Media Sosial Twitter,†Cover. J. Strateg. Commun., vol. 11, no. 1, 2020, [Online]. Available: www.covid19.go.id.
D. Markovikj, S. Gievska, M. Kosinski, and D. Stillwell, “Mining facebook data for predictive personality modeling,†AAAI Work. - Tech. Rep., vol. WS-13-01, pp. 23–26, 2013, doi: 10.1609/icwsm.v7i2.14466.
S. V. Therik, “Deteksi Kepribadian Big Five Pengguna Twitter Dengan Metode C4.5,†vol. 8, no. 5, pp. 10277–10287, 2021.
J. Ilmiah, I. Komputa, B. P. Utama, K. K. Purnamasari, and J. D. Bandung, “Support Vector Machine Dalam Sistem Pendeteksi Kepribadian Berdasarkan Pola Tanda Tangan,†J. Teknol. Inf. dan Ilmu Komput., vol. 7, 2018.
Y. B. N. D. Artissa, I. Asror, and S. A. Faraby, “Personality Classification based on Facebook status text using Multinomial Naïve Bayes method,†J. Phys. Conf. Ser., vol. 1192, no. 1, 2019, doi: 10.1088/1742-6596/1192/1/012003.
B. Y. Pratama and R. Sarno, “Personality classification based on Twitter text using Naive Bayes, KNN and SVM,†Proc. 2015 Int. Conf. Data Softw. Eng. ICODSE 2015, pp. 170–174, 2016, doi: 10.1109/ICODSE.2015.7436992.
G. Informatika, S. Bits, S. H. Issn, T. Ayu, and W. Maharani, “Deteksi Kepribadian di Media Sosial Twitter Menggunakan Metode IndoBERT,†vol. 4, no. 2, pp. 448–453, 2022, doi: 10.47065/bits.v4i2.1895.
E. Ronando, M. I. Irawan, and E. Apriliani, “A Hybrid Approach Support Vector Machine (SVM) - Neuro Fuzzy For Fast Data Classification,†IPTEK J. Proceeding Ser., vol. 1, pp. 105–106, 2015.
F. Damayanti, A. Z. Arifin, and R. Soelaiman, “Pengenalan Citra Wajah Menggunakan Metode Two-Dimensional Linear Discriminant,†vol. 5, no. 3, pp. 147–156, 2010.
D. A. Pisner and D. M. Schnyer, “Support Vector Machine - Teori dan Aplikasinya dalam Bioinformatika,†Mach. Learn. Methods Appl. to Brain Disord., pp. 101–121, 2019, doi: 10.1016/B978-0-12-815739-8.00006-7.
“Penerapan Metode Support Vector Machine (SVM) untuk Mendeteksi Penyalahgunaan Narkoba.pdf.†.
M. Priandi and Painem, “Analisis Sentimen Masyarakat Terhadap Pembelajaran Daring di Era Pandemi Covid-19 pada Media Sosial Twitter Menggunakan Ekstraksi Fitur Countvectorizer dan Algoritma K-Nearest Neighbor,†Semin. Nas. Mhs. Ilmu Komput. dan Apl. Jakarta-Indonesia, no. September, pp. 311–319, 2021.
H. N. Irmanda and Ria Astriratma, “Klasifikasi Jenis Pantun Dengan Metode Support Vector Machines (SVM),†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 5, pp. 915–922, 2020, doi: 10.29207/resti.v4i5.2313.
R. Between, S. J. Impact, T. Related, E. Indexes, and Z. Lian-feng, “Perbandingan Metode Decision Tree dan Support Vector Machine untuk Analisis Sentimen pada Instagram Mengenai Kinerja PSSI,†vol. 7, no. 3, pp. 9936–9948, 2020.
F. S. Jumeilah, “Penerapan Support Vector Machine (SVM) untuk Pengkategorian Penelitian,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 1, no. 1, pp. 19–25, 2017, doi: 10.29207/resti.v1i1.11.
I. C. R. Drajana, “Metode Support Vector Machine Dan Forward Selection Prediksi Pembayaran Pembelian Bahan Baku Kopra,†Ilk. J. Ilm., vol. 9, no. 2, pp. 116–123, 2017, doi: 10.33096/ilkom.v9i2.134.116-123.
L. Mutawalli, M. T. A. Zaen, and W. Bagye, “KLASIFIKASI TEKS SOSIAL MEDIA TWITTER MENGGUNAKAN SUPPORT VECTOR MACHINE (Studi Kasus Penusukan Wiranto),†J. Inform. dan Rekayasa Elektron., vol. 2, no. 2, p. 43, 2019, doi: 10.36595/jire.v2i2.117.
D. S. Ramdan, “Komparasi Antara Algoritma Support Vector Machine Dan Artificial Neural Network Untuk Pemodelan Data Time Series,†Tedc, vol. 8, no. 2, pp. 154–159, 2014.
C. Huang, Y. Li, and X. Yao, “A Survey of Automatic Parameter Tuning Methods for Metaheuristics,†IEEE Trans. Evol. Comput., vol. 24, no. 2, pp. 201–216, 2020, doi: 10.1109/TEVC.2019.2921598.
M. . Imelda A.Muis & Muhammad Affandes, “Penerapan Metode Support Vector Machine ( SVM ) Menggunakan Kernel Radial Basis Function ( RBF ) Pada Klasifikasi Tweet,†Sains, Teknol. dan Ind. Sultan Syarif Kasim Riau, vol. 12, no. 2, pp. 189–197, 2015.



