Implementasi Jaringan Syaraf Tiruan Backpropagation Pada Klasifikasi Grade Teh Hitam
DOI:
https://doi.org/10.30865/json.v4i2.5312Keywords:
Backpropagation, Artificial Neural Network, Classification, Grade, Black TeaAbstract
Black tea is the most widely produced type of tea in Indonesia, where Indonesia itself is the 5th largest black tea exporter in the world. According to the provisions of SNI-1902-2016, the quality requirements of black tea through appearance include the shape, size and weight (density), and the color of the black tea particles themselves. This study aims to determine the workings of the backpropagation method and the implementation of python on black tea grade classification, and to determine the level MSE of accuracy in the results of black tea grade classification using backpropagation. The model used in this study uses 4 input layers, 5 hidden layers, and 3 output layers. In the input layer, 4 input variables are used, namely shape, size, density, and color. The results of the classification using backpropagation with a number of iterations of 1000 iterations on the training data obtained an error of 0.096.
References
B. S. Amanto, T. N. Aprilia, and A. Nursiwi, “PENGARUH LAMA BLANCHING DAN RUMUS PETIKAN DAUN TERHADAP KARAKTERISKTIK FISIK, KIMIA, SERTA SENSORIS TEH DAUN TIN (Ficus carica),†J. Teknol. Has. Pertan., vol. 12, no. 1, p. 1, 2020, doi: 10.20961/jthp.v12i1.36436.
Balittri, “MENGENAL 4 MACAM JENIS TEH,†2012. http://balittri.litbang.pertanian.go.id/index.php/berita/info-teknologi/159-mengenal-4-macam-jenis-teh (accessed Jul. 23, 2021).
Badan Standarisasi Nasional, “SNI : 1902:2016 (Teh hitam),†2016.
J. Jamaludin, C. Rozikin, and A. S. Y. Irawan, “Klasifikasi Jenis Buah Mangga dengan Metode Backpropagation,†Techné J. Ilm. Elektrotek., vol. 20, no. 1, pp. 1–12, 2021, doi: 10.31358/techne.v20i1.231.
N. Norhikmah and R. Rumini, “Klasifikasi Peminjaman Buku Menggunakan Neural Network Backpropagation,†Sistemasi, vol. 9, no. 1, p. 1, 2020, doi: 10.32520/stmsi.v9i1.562.
S. H. Hasanah and S. M. Permatasari, “UNIVERSITAS TERBUKA Backpropagation Artificial Neural Network Classification Method In Statistics Students of Open University,†vol. 14, no. 2, pp. 243–252, 2020.
R. M. Hakiky, N. Hikmah, and D. Ariyanti, “Klasifikasi Jenis Pohon Mangga Berdasarkan Bentuk dan Tekstur Daun Menggunakan Metode Backpropagation,†J. Inform. Upgris, vol. 6, no. 2, 2021, doi: 10.26877/jiu.v6i2.6645.
R. R. P. Putri, M. T. Furqon, and B. Rahayudi, “Implementasi Metode JST-Backpropagation Untuk Klasifikasi Rumah Layak Huni,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. Vol.2, no. 10, pp. 3360–3365, 2018.
I. A. Safitri and A. Junaedi, “Manajemen Pemangkasan Tanaman Teh (Camellia sinensis (L.) O. Kuntze) di Unit Perkebunan Tambi, Jawa Tengah,†Bul. Agrohorti, vol. 6, no. 3, pp. 344–353, 2018, doi: 10.29244/agrob.v6i3.21098.
Solikhun and Wahyudi mochamad, JARINGAN SARAF TIRUAN BACKPROPAGATION Pengenalann Pola Calon Debitur Terbaik. yayasan kita menulis, 2020.
D. N. Agus Perdana Windarto, M. S. H. Anjar Wanto, Frinto Tambunan, M. R. L. Muhammad Noor Hasan Siregar, and D. N. Solikhun, Yusra Fadhillah, Jaringan Saraf Tiruan: Algoritma Prediksi dan Implementasi, vol. 53, no. 9. Yayasan Kita Menulis, 2019. Accessed: Jul. 23, 2021. [Online]. Available: https://www.google.co.id/books/edition/Jaringan_Saraf_Tiruan_Algoritma_Prediksi/QwjhDwAAQBAJ?hl=id&gbpv=1&dq=jaringan+syaraf+tiruan&printsec=frontcover
Julpan, E. B. Nababan, and M. Zarlis, “Analisis Fungsi Aktivasi Sigmoid Bipolar Dalam Algoritma Backpropagation Pada Prediksi Kemampuan Mahasiswa,†J. Teknovasi, vol. 02, pp. 103–116, 2015.
I. Pamungkas, S. Sumadi, and S. Alam, “Studi Komparasi Fungsi Aktivasi Sigmoid Biner, Sigmoid Bipolar dan Linear pada Jaringan Saraf Tiruan dalam Menentukan Warna RGB Menggunakan Matlab,†J. Serambi Eng., vol. 7, no. 4, 2022, doi: 10.32672/jse.v7i4.4776.
Y. A. Lesnussa, L. J. Sinay, and M. R. Idah, “Aplikasi Jaringan Saraf Tiruan Backpropagation untuk Penyebaran Penyakit Demam Berdarah Dengue (DBD) di Kota Ambon,†J. Mat. Integr., vol. 13, no. 2, p. 63, 2017, doi: 10.24198/jmi.v13.n2.11811.63-72.
G. A. Setiawan and E. Vania, Praktek Pemrograman C++ dan Python. SCU Knowledge Media, 2022. [Online]. Available: https://books.google.co.id/books?id=nzJsEAAAQBAJ
Widiarti, R. R. Periwi, and A. Sutrisno, “Perbandingan Mean Squared Error ( MSE ) Metode Prasad-Rao dan Jiang-Lahiri-Wan Pada Pendugaan Area Kecil,†Semin. Nas. Teknoka, vol. 2, no. 2502, pp. 56–60, 2017, [Online]. Available: https://journal.uhamka.ac.id/index.php/teknoka/article/view/752/296
D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,†J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 5, no. 2, pp. 697–711, 2021.
N. P. A. Widiari, I. M. A. D. Suarjaya, and D. P. Githa, “Teknik Data Cleaning Menggunakan Snowflake untuk Studi Kasus Objek Pariwisata di Bali,†J. Ilm. Merpati (Menara Penelit. Akad. Teknol. Informasi), vol. 8, no. 2, p. 137, 2020, doi: 10.24843/jim.2020.v08.i02.p07.
P. D. Samsu, S.Ag., M.Pd.I., Metode Penelitian, no. 17. 2017.
D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,†Comput. Eng. Sci. Syst. J., vol. 4, no. 1, p. 78, 2019, doi: 10.24114/cess.v4i1.11458.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).

