Penerapan Feature Selection Pada Algoritma Decision Tree Untuk Menentukan Pola Rekomendasi Dini Konseling

Authors

  • Oman Somantri Politeknik Negeri Cilacap, Cilacap http://orcid.org/0000-0002-7261-9975
  • Wildani Eko Nugroho Politeknik Harapan Bersama, Tegal
  • Abdul Rohman Supriyono Politeknik Negeri Cilacap, Cilacap

DOI:

https://doi.org/10.30865/json.v4i2.5267

Keywords:

Counseling, Decision Tree, Feature Selection, Forward Selection, Algoritma Genetika.

Abstract

Early detection in providing recommendations for student counseling is very important, therefore you can assess the student's potential, beliefs, and attitude as early as possible. The problem that arises in this case is how to detect a student early so that he or she needs counseling assistance or not so that it can be identified early to minimize the risk of further psychological conditions. This article proposes a data mining model using a decision tree to classify counseling recommendations for students. In addition, to improve the resulting accuracy performance, a feature selection method is proposed using forward selection and genetic algorithms. The stages of the research were carried out by pre-processing the data, implementing algorithms, validating data, and optimizing the model. The experimental results show that the best level of accuracy using the decision tree model is 95.64%. It increases to 96.91% after optimization using the genetic algorithm.

Author Biography

Oman Somantri, Politeknik Negeri Cilacap, Cilacap

Program Studi Teknik Informatika

SCOPUS ID: 57208898676

References

C. A. W. Morris, K. L. Wester, C. T. Jones, and S. Fantahun, “School Counselors and Unified Educator–Counselor Identity: A Data-Informed Approach to Suicide Prevention,†Prof. Sch. Couns., vol. 24, no. 1_part_3, p. 2156759X2110119, Jan. 2021, doi: 10.1177/2156759X211011909.

G. Ping, “Application of Decision Tree Algorithm in Mental Health Evaluation,†2022, pp. 524–529.

O. W. A. Wilson, C. M. Bopp, Z. Papalia, M. Duffey, and M. Bopp, “College Students’ Experiences and Attitudes Toward Physical Activity Counseling,†J. Nurse Pract., vol. 16, no. 8, pp. 623–628, Sep. 2020, doi: 10.1016/j.nurpra.2020.06.006.

J. M. Faro et al., “U.S. medical students personal health behaviors, attitudes and perceived skills towards weight management counseling,†Prev. Med. Reports, vol. 27, p. 101814, Jun. 2022, doi: 10.1016/j.pmedr.2022.101814.

C. Carter, J. Harnett, I. Krass, and I. Gelissen, “Attitudes, behaviours, and self-reported confidence of Australian pharmacy students and interns towards nutritional counselling,†Curr. Pharm. Teach. Learn., vol. 14, no. 11, pp. 1411–1419, Nov. 2022, doi: 10.1016/j.cptl.2022.09.028.

V. Kuryluk, J. McAuley, and M. Maguire, “Naloxone counseling: Confidence and attitudes of student pharmacists after a volunteer syringe exchange experience,†Curr. Pharm. Teach. Learn., vol. 12, no. 4, pp. 429–433, Apr. 2020, doi: 10.1016/j.cptl.2019.12.027.

H. Lim and J. C. Barner, “Impact of a pilot workshop on student pharmacists’ confidence and comfort in counseling patients at risk for maternal mortality,†Curr. Pharm. Teach. Learn., vol. 14, no. 1, pp. 71–82, Jan. 2022, doi: 10.1016/j.cptl.2021.12.001.

S. Chircu, “Career Counseling Needs for Students – A Comparative Study,†Procedia - Soc. Behav. Sci., vol. 127, pp. 549–553, Apr. 2014, doi: 10.1016/j.sbspro.2014.03.308.

A. Naik and L. Samant, “Correlation Review of Classification Algorithm Using Data Mining Tool: WEKA, Rapidminer, Tanagra, Orange and Knime,†Procedia Comput. Sci., vol. 85, pp. 662–668, 2016, doi: 10.1016/j.procs.2016.05.251.

M. Gordan et al., “State-of-the-art review on advancements of data mining in structural health monitoring,†Measurement, vol. 193, p. 110939, Apr. 2022, doi: 10.1016/j.measurement.2022.110939.

O. Somantri, “An Optimize Weights Naïve Bayes Model for Early Detection of Diabetes,†Telematika, vol. 15, no. 1. scholar.archive.org, 2022, doi: 10.35671/telematika.v15i1.1307.

A. M. H. Chen, S. Cailor, T. Franz, N. Fox, P. Thornton, and M. Norfolk, “Development and validation of the self-care counseling rubric (SCCR) to assess student self-care counseling skills,†Curr. Pharm. Teach. Learn., vol. 11, no. 8, pp. 774–781, Aug. 2019, doi: 10.1016/j.cptl.2019.04.006.

K. B. Garza, N. S. Hohmann, J. Kavookjian, and E. L. Kleppinger, “Assessment of student performance on a mock new prescription counseling session and an objective structured clinical examination across five years,†Curr. Pharm. Teach. Learn., vol. 12, no. 9, pp. 1046–1055, Sep. 2020, doi: 10.1016/j.cptl.2020.04.018.

L. Carvalho, L. Mourão, and C. Freitas, “Career counseling for college students: Assessment of an online and group intervention,†J. Vocat. Behav., p. 103820, Nov. 2022, doi: 10.1016/j.jvb.2022.103820.

M. Li and H. Yang, “Decision Tree Algorithm in College Students’ Health Evaluation System,†2021, pp. 705–710.

A. Bottcher, V. Thurner, T. Hafner, and J. Hertle, “A Data Science-based Approach for Identifying Counseling Needs in first-year Students,†in 2021 IEEE Global Engineering Education Conference (EDUCON), Apr. 2021, pp. 420–429, doi: 10.1109/EDUCON46332.2021.9454042.

Y. Xue, H. Zhu, J. Liang, and A. Słowik, “Adaptive crossover operator based multi-objective binary genetic algorithm for feature selection in classification,†Knowledge-Based Syst., vol. 227, p. 107218, Sep. 2021, doi: 10.1016/j.knosys.2021.107218.

P. Agrawal, H. F. Abutarboush, T. Ganesh, and A. W. Mohamed, “Metaheuristic Algorithms on Feature Selection: A Survey of One Decade of Research (2009-2019),†IEEE Access, vol. 9, pp. 26766–26791, 2021, doi: 10.1109/ACCESS.2021.3056407.

I. Markoulidakis, I. Rallis, I. Georgoulas, G. Kopsiaftis, A. Doulamis, and N. Doulamis, “Multiclass Confusion Matrix Reduction Method and Its Application on Net Promoter Score Classification Problem,†Technologies, vol. 9, no. 4, p. 81, Nov. 2021, doi: 10.3390/technologies9040081.

C. S. Hong, “Confusion plot for the confusion matrix,†J. Korean Data Inf. Sci. Soc., vol. 32, no. 2, pp. 427–437, Mar. 2021, doi: 10.7465/jkdi.2021.32.2.427.

B. Charbuty and A. Abdulazeez, “Classification Based on Decision Tree Algorithm for Machine Learning,†J. Appl. Sci. Technol. Trends, vol. 2, no. 01, pp. 20–28, Mar. 2021, doi: 10.38094/jastt20165.

V. Kotu and B. Deshpande, “Feature Selection,†in Data Science, Elsevier, 2019, pp. 467–490.

A. Meyer-Baese and V. Schmid, “Feature Selection and Extraction,†in Pattern Recognition and Signal Analysis in Medical Imaging, Elsevier, 2014, pp. 21–69.

E. Wirsansky, Hands-on genetic algorithms with Python : applying genetic algorithms to solve real-world deep learning and artificial intelligence problems. Packt Publishing Ltd, 2020.

F. Buontempo, Genetic Algorithms and Machine Learning for Programmers: Create AI Models and Evolve Solutions (Pragmatic Programmers) 1st Edition. 2019.

Downloads

Published

2022-12-31

How to Cite

Somantri, O., Nugroho, W. E., & Supriyono, A. R. (2022). Penerapan Feature Selection Pada Algoritma Decision Tree Untuk Menentukan Pola Rekomendasi Dini Konseling. Jurnal Sistem Komputer Dan Informatika (JSON), 4(2), 272–279. https://doi.org/10.30865/json.v4i2.5267