Optimasi Akurasi Klasifikasi Pada Prediksi Smokte Detection dengan Menggunakan Algoritma Adaboost

Authors

  • Amin Nur Rais Universitas Bina Sarana Informatika, Jakarta
  • Warjiyono Warjiyono Universitas Bina Sarana Informatika, Tegal

DOI:

https://doi.org/10.30865/json.v4i2.5154

Keywords:

Adaboost, Naïve Bayes, Data Mining, Smoke Detection

Abstract

The problem of fire is a threat to nature and the environment. To deal with fire incidents, a smoke detector was created and developed in combination with an IoT device so that incident data can be recorded properly where the recorded data will be used as a reference for increasing the accuracy of early detection. Increasing the accuracy of smoke detectors so that they can be combined with artificial intelligence technology. This research proposes prediction optimization using the adaboost algorithm combined with the naïve Bayes classification algorithm with a measurement matrix based on accuracy, recall, and precision. The results showed that using the adaboost algorithm could increase the resulting accuracy value with a value of 0.987. If you look at the evaluation from the precision side, it also shows that the use of the adaboost algorithm can increase the precision value with a value of 0.971. But the recall evaluation showed that without boost it got a better score with a value of 0.995

References

R. Zafar, S. Zaib, and M. Asif, “False fire alarm detection using data mining techniques,†Int. J. Decis. Support Syst. Technol., vol. 12, no. 4, pp. 21–35, 2020, doi: 10.4018/IJDSST.2020100102.

S. Wang, X. Xiao, T. Deng, A. Chen, and M. Zhu, “A Sauter mean diameter sensor for fire smoke detection,†Sensors Actuators, B Chem., vol. 281, no. September 2018, pp. 920–932, 2019, doi: 10.1016/j.snb.2018.11.021.

E. V. V. D. D. P. C.K. Gomathy, “IRJET- The Fire Alarm System based on IoT,†Irjet, vol. 8, no. 10, 2021.

M. T. Anwar, W. Hadikurniawati, E. Winarno, and W. Widiyatmoko, “Performance Comparison of Data Mining Techniques for Rain Prediction Models in Indonesia,†2020 3rd Int. Semin. Res. Inf. Technol. Intell. Syst. ISRITI 2020, no. December, pp. 83–88, 2020, doi: 10.1109/ISRITI51436.2020.9315460.

F. Marisa, “Educational Data Mining (Konsep dan Penerapan),†J. Teknol. Inf., vol. 4, no. 2, pp. 91–93, 2013.

D. K. Appana, R. Islam, S. A. Khan, and J. M. Kim, “A video-based smoke detection using smoke flow pattern and spatial-temporal energy analyses for alarm systems,†Inf. Sci. (Ny)., vol. 418–419, pp. 91–101, 2017, doi: 10.1016/j.ins.2017.08.001.

R. Yendra, L. Marifni, and I. Suryani, “Klasifikasi Data Mining Untuk Seleksi Penerimaan Calon Pegawai Negeri Sipil Tahun 2017 Menggunakan Metode Naïve Bayes,†J. Sains Mat. dan Stat., vol. 6, no. 1, p. 65, 2020, doi: 10.24014/jsms.v6i1.9254.

E. S. WAHYUNI and M. HENDRI, “Smoke and Fire Detection Base on Convolutional Neural Network,†ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 7, no. 3, p. 455, 2019, doi: 10.26760/elkomika.v7i3.455.

A. N. Rais and A. Subekti, “Integrasi SMOTE Dan Ensemble AdaBoost Untuk Mengatasi Imbalance Class Pada Data Bank Direct Marketing,†J. Inform., vol. 6, no. 2, pp. 278–285, 2019, doi: 10.31311/ji.v6i2.6186.

F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, and C. Silva, “Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors,†J. Mater. Chem. C, vol. 3, pp. 10715–10722, 2015, doi: 10.1039/b000000x.

Fadila, W. I. Rahayu, and M. H. K. Saputra, Penerapan Metode Naive Bayes dan Skala Likert Pada Aplikasi Prediksi Kelulusan Mahasiswa, Rolly Maul. Bandung: Kreatif Industri Nusantara, 2020.

E. Listiana and M. A. Muslim, “Prosiding Seminar Nasional Teknologi dan Informatika, 2017 : Kudus, 25 Juli 2017,†Pros. SNATIF, no. 2015, pp. 875–881, 2017.

X. Zhang and Q. Song, “A multi-label learning based kernel automatic recommendation method for support vector machine,†PLoS One, vol. 10, no. 4, pp. 1–30, 2015, doi: 10.1371/journal.pone.0120455.

G. Chandrashekar and F. Sahin, “A survey on feature selection methods,†Comput. Electr. Eng., vol. 40, no. 1, pp. 16–28, 2014, doi: 10.1016/j.compeleceng.2013.11.024.

M. D. Alkhussayid, “Implementasi Algoritma K-Nearest Neighbors Pada Penentuan Jurusan Siswa,†vol. 4, no. September, pp. 25–36, 2022, doi: 10.30865/json.v4i1.4759.

S. T. Rizaldi and M. Mustakim, “Perbandingan Teknik Pembagian Data untuk Klasifikasi Sarana Akses Air pada Algoritma K- Nearest Neighbor dan Naïve Bayes Classifier,†Semin. Nas. Teknol. Informasi, Komun. dan Ind. 12, pp. 130–137, 2020.

L. Munkhdalai, T. Munkhdalai, K. H. Park, H. G. Lee, M. Li, and K. H. Ryu, “Mixture of Activation Functions with Extended Min-Max Normalization for Forex Market Prediction,†IEEE Access, vol. 7, pp. 183680–183691, 2019, doi: 10.1109/ACCESS.2019.2959789.

Downloads

Published

2022-12-31

How to Cite

Nur Rais, A., & Warjiyono, W. (2022). Optimasi Akurasi Klasifikasi Pada Prediksi Smokte Detection dengan Menggunakan Algoritma Adaboost. Jurnal Sistem Komputer Dan Informatika (JSON), 4(2), 343–348. https://doi.org/10.30865/json.v4i2.5154