Implementasi Algoritma Naïve Bayes Classifier (NBC) untuk Klasifikasi Penyakit Ginjal Kronik

 (*)Qurotul A'yuniyah Mail (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)
 Ena Tasia (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)
 Nanda Nazira (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)
 Pangeran Fadillah Pratama (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)
 Muhammad Ridho Anugrah (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)
 Jeni Adhiva (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)
 Mustakim Mustakim (Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia)

(*) Corresponding Author

Submitted: September 2, 2022; Published: September 30, 2022

Abstract

Degenerative disease is a non-communicable disease that arises from an unhealthy lifestyle, so that it can reduce the physical and mental quality of the sufferer. Chronic Kidney Disease (CDK) is a degenerative disease that is included in the world's top 10 causes of death according to the World Health Organization (WHO). This study used CDK data with attributes of age, blood pressure, weight, albumin levels, sugar levels, red blood cells, pus cells, pus cell clots, bacteria, blood sugar levels, blood urea levels, creatinine serum, sodium, magnesium, hemoglobin, the volume occupied by red blood, indications of hypertension, indications of diabetes mellitus, indications of coronary heart disease, appetite, indications of swelling in the calves or feet, and indications of anemia. Therefore, the classification of kidney disease data is carried out with the implementation of the superior Naïve Bayes Classifier (NBC) algorithm and produces a high level of accuracy. The classification results using the RapidMiner tools carried out by the application of the NBC algorithm, the accuracy value is 96.43%, the average recall is 93.18%, the average precision is 93.02%, and the AUC is 93.2%. so it can be concluded that the performance of NBC in classifying chronic kidney disease data is excellent.

Keywords


Classification; Chronic Kidney Disease; Data Mining; NBC; RapidMiner

Full Text:

PDF


Article Metrics

Abstract view : 288 times
PDF - 110 times

References

N. D. Lika, “PENERAPAN ALGORITMA NBC UNTUK KLASIFIKASI TINGKAT RESIKO PENYAKIT DIABETES MELLITUS,” J. Chem. Inf. Model., vol. 21, no. 1, pp. 1–9, 2020.

Suwanti, Taufikurrahman, M. I. Rosyidi, and A. Wakhid, “Kualitas Hidup Pasien Gagal Ginjal Kronik Yang Menjalani Terapi Hemodialisa,” J. Keperawatan Muhammadiyah Bengkulu, vol. 9, no. 2, pp. 1–9, 2021, doi: 10.36085/jkmb.v9i2.1711.

T. Arifin and D. Ariesta, “Prediksi Penyakit Ginjal Kronis Menggunakan Algoritma Naive Bayes Classifier Berbasis Particle Swarm Optimization,” J. Tekno Insentif, vol. 13, no. 1, pp. 26–30, 2019, doi: 10.36787/jti.v13i1.97.

I. Yulianti, R. Amegia Saputra, M. Sukrisno Mardiyanto, and A. Rahmawati, “Optimasi Akurasi Algoritma C4.5 Berbasis Particle Swarm Optimization dengan Teknik Bagging pada Prediksi Penyakit Ginjal Kronis Optimization of C4.5 Algorithm Based On Particle Swarm Optimization with Bagging Technique on Prediction of Chronic Kidney Dise,” Techno.COM, vol. 19, no. 4, pp. 411–421, 2020.

I. Kamila, U. Khairunnisa, and M. Mustakim, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 5, no. 1, p. 119, 2019, doi: 10.24014/rmsi.v5i1.7381.

E. T. Lestari and J. Adhiva, “Implementation Naive Bayes Classifier Algorithm and K-Nearest Neighbor For Obesity Nutritional Status of Children with Disabilities Implementasi Algoritma Naive Bayes Classifier dan K-Nearest Neighbor Untuk Klasifiasi Status Gizi Obesitas Anak Disabilitas,” pp. 1–11, 2022.

M. Hudha, ----/Endang Supriyati, and T. Listyorini, “Analisis Sentimen Pengguna Youtube Terhadap Tayangan #Matanajwamenantiterawan Dengan Metode Naïve Bayes Classifier,” JIKO (Jurnal Inform. dan Komputer), vol. 5, no. 1, pp. 1–6, 2022, doi: 10.33387/jiko.v5i1.3376.

A. W. Syaputri, E. Irwandi, and Mustakim, “Naïve Bayes Alghorithm for Classification of Student Major’s Specialization,” vol. 1, no. 1, pp. 1–5, 2020.

D. Irawan, H. Oktavianto, M. K. Anam, T. Informatika, and U. M. Jember, “Analisis Penerapan Algoritma Naive Bayes,” JASIE “Jurnal Apl. Sist. Inf. Dan Elektron., vol. 1, no. 2, pp. 127–134, 2019.

S. Widaningsih, “Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, Knn Dan Svm,” J. Tekno Insentif, vol. 13, no. 1, pp. 16–25, 2019, doi: 10.36787/jti.v13i1.78.

A. Abdullah, D. Salwani, A. B. Khairi, M. Muhsin, and M. Syukri, “Puasa ramadhan dan pengaruhnya terhadap progresifitas penyakit ginjal kronik,” J. Kedokt. Syiah Kuala, vol. 21, no. 3, p. 2021, 2021, doi: 10.24815/jks.v21i3.23754.

A. Sembiring, S. Andryana, and A. Gunaryati, “Sistem Pakar Berbasis Mobile Untuk Diagnosis Penyakit Ginjal Menggunakan Metode Forward Chaining,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 6, no. 1, pp. 139–148, 2021, doi: 10.29100/jipi.v6i1.1932.

N. Nuraeni, “Klasifikasi Data Mining untuk Prediksi Potensi Nasabah dalam Membuat Deposito Berjangka,” J. Ilm. Intech Inf. Technol. J. …, vol. 3, no. 01, pp. 65–74, 2021.

B. A. Candra Permana and I. K. Dewi Patwari, “Komparasi Metode Klasifikasi Data Mining Decision Tree dan Naïve Bayes Untuk Prediksi Penyakit Diabetes,” Infotek J. Inform. dan Teknol., vol. 4, no. 1, pp. 63–69, 2021, doi: 10.29408/jit.v4i1.2994.

J. Adhiva, S. A. Putri, and S. G. Setyorini, “Prediksi Hasil Produksi Kelapa Sawit Menggunakan Model Regresi Pada PT . Perkebunan Nusantara V,” Semin. Nas. Teknol. Informasi, Komun. dan Ind., pp. 155–162, 2020.

A. Tarigan, E. Wahyudi, and J. Adhiva, “Klasifikasi Status Kesejahteraan Rumah Tangga di Kabupaten Siak Menggunakan Algoritma Naive Bayes Classifier,” no. November, pp. 187–196, 2019.

A. Hamdani, Mustakim, and I. Kamila, “Klasifikasi Dokumen Tugas Akhir Berbasis Text Mining menggunakan Metode Naïve Bayes Classifier dan K-Nearest Neighbor,” Semin. Nas. Teknol. Informasi, Komun. dan Ind. 11, no. November, pp. 178–186, 2019.

T. A. Putra and P. A. . Purnama, “Perancangan Sistem Pakar untuk Mendiagnosa Penyakit Toksoplasma pada Wanita Menggunakan Metode Bayes dengan Bahasa Pemrograman PHP dan Database MySQL,” Sink. J. dan Penelit. Tek. Inform., vol. 3, no. 1, pp. 120–129, 2018.

firman Tempola, “Implementasi Metode Naive Bayes Untuk Memprediksi Resiko Penyakit Jantung,” Patria Artha Technol. J., vol. 4, no. 2, pp. 66–70, 2020, doi: 10.33857/patj.v4i2.351.

A. Ali, A. Khairan, F. Tempola, and A. Fuad, “Application Of Naïve Bayes to Predict the Potential of Rain in Ternate City,” E3S Web Conf., vol. 328, p. 04011, 2021, doi: 10.1051/e3sconf/202132804011.

A. Harun and D. P. Ananda, “Analisa Sentimen Opini Publik Tentang Vaksinasi Covid-19 di Indonesia Menggunakan Naïve Bayes dan Decission Tree,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. 1, pp. 58–63, 2021.

R. Rustiyan and M. Mustakim, “Penerapan Algoritma Fuzzy C Means untuk Analisis Permasalahan Simpanan Wajib Anggota Koperasi,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 2, p. 171, 2018, doi: 10.25126/jtiik.201852605.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi Algoritma Naïve Bayes Classifier (NBC) untuk Klasifikasi Penyakit Ginjal Kronik

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Qurotul A'yuniyah, Ena Tasia, Nanda Nazira, Pangeran Fadillah Pratama, Muhammad Ridho Anugrah, Jeni Adhiva, Mustakim Mustakim

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Sistem Komputer dan Informatika (JSON)
Dikelola oleh STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : jurnal.json@gmail.com


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.