Analisis Sentimen Produk Kecantikan Jenis Serum Menggunakan Algoritma Naïve Bayes Classifier

 (*)Muhammad Hamka Mail (Universitas Muhammadiyah Purwokerto, Purwokerto, Indonesia)
 Naila Alfatari (Universitas Muhammadiyah Purwokerto, Purwokerto, Indonesia)
 Dhani Ratna Sari (Institut Teknologi dan Bisnis Muhammadiyah Purbalingga, Purbalingga, Indonesia)

(*) Corresponding Author

Submitted: August 24, 2022; Published: September 30, 2022

Abstract

The increased consumption of beauty products as a lifestyle has increased public opinion on the beauty products used. Generally, reviews are given through posts on social media. This study discusses the classification of sentiment analysis on the use of serum beauty products on Twitter using the Naïve Bayes Multinomial algorithm. Sentiment analysis of serum beauty products is carried out to provide information and preferences to the public regarding the quality of a product. The results of the information and preferences become a reference for consideration in choosing the appropriate serum beauty product. The data used in this study were 27,587 tweets using three keywords, namely "serum," "face serum", and "beauty serum". Tweet data is divided into training data and test data with the number of training data as much as 22,070 tweets and test data as much as 5,518 tweets. The data is categorized using the lexicon senticnet 7 dictionary based on polarity values. The results of the analysis of positive sentiment are 35%, negative sentiment is 63.8%, and neutral sentiment is 1.2%. The classification results using Naïve Bayes Multinomial obtain the highest accuracy value of 80%. The Confusion Matrix results get the highest precision value of 88%, the highest recall of 81%, and the highest f1-Score of 86%.

Keywords


Sentiment Analysis; Lexicon-Based; TF-IDF; Naïve Bayes Multinomial; Serum Beauty Products

Full Text:

PDF


Article Metrics

Abstract view : 159 times
PDF - 89 times

References

A. Y. Clara, Adiwijaya, and M. D. Purbolaksono, “Aspect Based Sentiment Analysis on Beauty Product Review Using Random Forest,” J. Data Sci. Its Appl., vol. 3, no. 2, pp. 67–77, 2020, doi: 10.34818/JDSA.2020.3.58.

N. F. Andriani and A. H. Setiawan, “Analisis Preferensi Konsumen Terhadap Penggunaan Produk Skincare Korea Selatan dan Lokal,” Diponegoro J. Econ., vol. 9, no. 4, pp. 1–8, 2020.

E. Y. Prastika, S. Al Faraby, and M. Dwifebri, “Analisis Sentimen pada Ulasan Produk Kecantikan Menggunakan K-Nearest Neighbor dan Information Gain,” vol. 8, no. 5, pp. 10091–10105, 2021.

APJII, “Profil Internet Indonesia 2022,” 2022.

We Are Social, “Digital 2022 Indonesia, February 2022.” We Are Social, New York, pp. 24–84, 2022.

F. D. Ananda and Y. Pristyanto, “Analisis Sentimen Pengguna Twitter Terhadap Layanan Internet Provider Menggunakan Algoritma Support Vector Machine,” Matrik J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 20, no. 2, pp. 407–416, 2021, doi: 10.30812/matrik.v20i2.1130.

A. D. Riyanto, “Hootsuite (We are Social): Indonesian Digital Report 2021,” Andi.LInk, 2021. .

M. Hamka and D. Ratna Sari, “Analisis Sentimen dan Information Extraction Pembelajaran Daring Menggunakan Pendekatan Lexicon,” Djtechno J. Teknol. Inf., vol. 3, no. 1, pp. 21–32, Jul. 2022, doi: 10.46576/djtechno.v3i1.2194.

S. Raschka, Python Machine Learning. Birmingham: Packt Publishing, 2016.

F. A. Hirzani, W. Maharani, and M. A. Bijaksana, “Analisis Sentimen Review Produk Menggunakan Pendekatan Berbasis Kamus,” in e-Proceeding of Engineering, 2015, vol. 2, no. 2, pp. 5891–5898.

A. R. Pulakiang, I. M. N. Wiranatha, and J. R. Batmetan, “Analisis Kualitas Layanan E-Commerce Menggunana Twitter API (Studi Kasus :Tokopedia, Lazada dan Bukalapak),” Indones. J. Inf. Syst., vol. 4, no. April, pp. 25–31, 2019.

A. K. Fauziyyah, “Analisis Sentimen Pandemi Covid19 Pada Streaming Twitter Dengan Text Mining Python,” J. Ilm. SINUS, vol. 18, no. 2, p. 31, 2020, doi: 10.30646/sinus.v18i2.491.

R. Parlika, S. I. Pradika, A. M. Hakim, and K. R. N. M, “Analisis Sentimen Twitter Terhadap Bitcoin dan Cryptocurrency Berbasis Python TextBlob,” J. Ilm. Teknol. Inf. dan Robot., vol. 2, pp. 33–37, 2020.

R. A. Rangsang and H. Millayani, “The Effect Of Online Consumer Review On Customer Purchase Decision Process In The E-commerce Site Blibli. com,” in e-Proceeding of Management, 2021, vol. 8, no. 6, pp. 8501–8513.

E. Y. Prastika, S. Al Faraby, and M. D. P, “Analisis Sentimen pada Ulasan Produk Kecantikan Menggunakan K-Nearest Neighbor dan Information Gain,” in e-Proceeding of Engineering, 2021, vol. 8, no. 5, pp. 10091–10105.

D. F. Zhafira, B. Rahayudi, and I. Indriati, “Analisis Sentimen Kebijakan Kampus Merdeka Menggunakan Naive Bayes dan Pembobotan TF-IDF Berdasarkan Komentar pada Youtube,” J. Sist. Informasi, Teknol. Informasi, dan Edukasi Sist. Inf., vol. 2, no. 1, pp. 55–63, 2021, doi: 10.25126/justsi.v2i1.24.

F. V. Sari and A. Wibowo, “Analisis Sentimen Pelanggan Toko Online Jd.Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi,” J. SIMETRIS, vol. 10, no. 2, pp. 681–686, 2019.

E. Cambria, Q. Liu, S. Decherchi, F. Xing, and K. Kwok, “SenticNet 7: A Commonsense-based Neurosymbolic AI Framework for Explainable Sentiment Analysis,” in Proceedings of the Language Resources and Evaluation Conference, 2022, no. June, pp. 3829–3839.

R. Watrianthos, S. Suryadi, D. Irmayani, M. Nasution, and E. F. S. Simanjorang, “Sentiment analysis of traveloka app using naïve bayes classifier method,” Int. J. Sci. Technol. Res., vol. 8, no. 7, pp. 786–788, 2019.

S. Afrizal, H. N. Irmanda, N. Falih, and I. N. Isnainiyah, “Implementasi Metode Naïve Bayes untuk Analisis Sentimen Warga Jakarta Terhadap,” Inform. J. Ilmu Komput., vol. 15, no. 3, pp. 157–168, 2019, doi: 10.52958/iftk.v15i3.1454.

R. Apriani et al., “Analisis Sentimen dengan Naïve Bayes Terhadap Komentar Aplikasi Tokopedia,” J. Rekayasa Teknol. Nusa Putra, vol. 6, no. 1, pp. 54–62, 2019, doi: 10.52005/rekayasa.v6i1.86.

A. Sabrani, I. G. W. Wedashwara W., and F. Bimantoro, “Multinomial Naïve Bayes untuk Klasifikasi Artikel Online tentang Gempa di Indonesia,” J. Teknol. Informasi, Komputer, dan Apl. (JTIKA ), vol. 2, no. 1, pp. 89–100, 2020, doi: 10.29303/jtika.v2i1.87.

O. Kolchyna, T. T. P. Souza, P. Treleaven, and T. Aste, “Twitter sentiment analysis: Lexicon method, machine learning method and their combination,” arXiv Prepr. arXiv1507.00955, 2015.

D. Musfiroh et al., “Analisis Sentimen terhadap Perkuliahan Daring di Indonesia dari Twitter Dataset Menggunakan InSet Lexicon,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. 1, pp. 24–33, 2021.

A. Rahman and A. Doewes, “Online News Classification Using Multinomial Naive Bayes,” ITSMART J. Ilm. Teknol. dan Inf., vol. 6, no. 1, pp. 32–38, 2017.

R. Cahyadi, A. Damayanti, and D. Aryadani, “Recurrent Neural Network (RNN) dengan Long Short Term Memory (LSTM) untuk Analisis Sentimen data instagram,” J. Inform. dan Komput., vol. 5, no. 1, pp. 1–9, 2020, doi: 10.26798/jiko.v5i1.407.

Y. N. Prasetya, D. Winarso, and Syahril, “Penerapan Lexicon Based Untuk Analisis Sentimen Pada Twiter Terhadap Isu Covid-19,” FASILKOM, vol. 11, no. 2, pp. 97–103, 2021.

E. W. Pamungkas and D. G. P. Putri, “An experimental study of lexicon-based sentiment analysis on Bahasa Indonesia,” in Proceedings - 2016 6th International Annual Engineering Seminar, InAES 2016, 2017, pp. 28–31, doi: 10.1109/INAES.2016.7821901.

L. Vu and T. Le, “A lexicon-based method for Sentiment Analysis using social network data,” in Int’l Conf. Information and Knowledge Engineering, 2017, no. September, pp. 10–16.

M. N. Muttaqin and I. Kharisudin, “Analisis Sentimen Pada Ulasan Aplikasi Gojek Menggunakan Metode Support Vector Machine dan K Nearest Neighbor,” UNNES J. Math., vol. 10, no. 2, pp. 22–27, 2021.

W. Yulita, E. D. Nugroho, and M. H. Algifari, “Analisis Sentimen Terhadap Opini Masyarakat Tentang Vaksin Covid - 19 Menggunakan Algoritma Naïve Bayes Classifier,” JDMSI, vol. 2, no. 2, pp. 1–9, 2021.

S. Fanissa, M. A. Fauzi, and S. Adinugroho, “Analisis Sentimen Pariwisata di Kota Malang Menggunakan Metode Naive Bayes dan Seleksi Fitur Query Expansion Ranking,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 8, pp. 2766–2770, 2018.

C. Albon, Machine learning with Python cookbook : practical solutions from preprocessing to deep learning, 1st editio. California: O’Reilly Media, 2018.

D. P. Kroese, Z. I. Botev, T. Taimre, and R. Vaisman, Data Science and Machine Learning Mathematical and Statistical Methods. Florida: CRC Press, 2020.

Z. Juwantara, F. Eddy, D. H. Sasmita, T. N. Khoolish, and B. Aldiyansyah, “Kumparan NLP Library,” Feb. 2021, doi: 10.5281/ZENODO.4556870.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Sentimen Produk Kecantikan Jenis Serum Menggunakan Algoritma Naïve Bayes Classifier

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Muhammad Hamka, Naila Alfatari, Dhani Ratna Sari

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Sistem Komputer dan Informatika (JSON)
Dikelola oleh STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : jurnal.json@gmail.com


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.