Implementasi Klasifikasi Data Mining Untuk Penentuan Kelayakan Pemberian Kredit dengan Menggunakan Algoritma Naïve Bayes
DOI:
https://doi.org/10.30865/json.v4i1.4653Keywords:
Data Mining, Classification, Appropriateness, Credit, Naïve Bayes AlgorithmAbstract
Credit today is very widely used in the transaction process. At first, lending was only done by banks, but with the development of time and also the increasing needs and purchases from the public, lending is not only done by banks. The granting of credit for financing goods by the company to the buyer is not done haphazardly, but must go through several selection processes. The process of granting credit must be carried out through detailed and strict stages. This causes the process to be lengthy and also lengthens the work of the selection team. Data mining is a data processing technique that is useful for obtaining important patterns from data sets. The Naïve Bayes algorithm is part of the data mining classification process. The process of the Naïve Bayes algorithm is based on the concept of the Bayes theorem. The result of the research is that the new alternative data is ACCEPTABLE for credit applications, it can be seen that the probability value of ACCEPTED is greater than the probability value of REJECTED, which is 0.011108
References
R. Hasibuan Budiansyah, H. Hafizah, and R. Mahyuni, “Penerapan Data Mining Clustering Dengan Menggunakan Algoritma K-Means Pada Data Nasabah Kredit Bermasalah PT. BPR Milala,†J-SISKO TECH (Jurnal Teknol. Sist. Inf. dan Sist. Komput. TGD), vol. 5, no. 1, p. 7, 2022, doi: 10.53513/jsk.v5i1.4767.
N. Handayani, H. Wahyono, J. Trianto, and D. S. Permana, “Prediksi Tingkat Risiko Kredit dengan Data Mining Menggunakan Algoritma Decision Tree C . 45,†JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, pp. 198–204, 2021, doi: 10.30865/jurikom.v8i6.3643.
W. J. Lestari, Rahimah, W. L. Army, and D. R. Habibie, “Analisa Risiko Kredit Macet Dengan Pendekatan Data Mining (Studi Kasus: Koperasi Putra Kembar),†J. Sist. Inf. dan Manaj. 58, vol. 9, no. 1, pp. 58–64, 2021, [Online]. Available: https://ejournal.stmikgici.ac.id/index.php/jursima/article/view/241/158.
S. Silvilestari, “Data Mining Menggunakan Algoritma K-Nearest Neighbor Dalam Menentukan Kredit Macet Barang Elektronik,†J. Media Inform. Budidarma, vol. 5, no. 3, p. 1063, 2021, doi: 10.30865/mib.v5i3.3100.
I. F. Tarigan, D. Hartama, Suhada, Saifullah, and I. S. Saragih, “Penerapan Data Mining Pada Prediksi Kelayakan Pemohon Kredit Mobil Dengan K-Medoids Clustering,†KLIK Kaji. Ilm. Inform. …, vol. 1, no. 4, pp. 170–179, 2021, [Online]. Available: http://www.djournals.com/klik/article/view/153.
Y. Syahra and Suharsil, “Implementasi Data Mining Menggunakan Algoritma C4 . 5 Untuk Menganalisa Resiko Kredit Pada PT Permodalan Nasional Madani,†no. x.
M. Y. Putra and D. I. Putri, “Pemanfaatan Algoritma Naïve Bayes dan K-Nearest Neighbor Untuk Klasifikasi Jurusan Siswa Kelas XI,†J. Tekno Kompak, vol. 16, no. 2, pp. 176–187, 2022.
R. P. Pratiwi, I. Tazro, and C. Juliane, “Penerapan Algoritma Naïve Bayes untuk Mengidentifikasi Strategi Marketing dalam Penjualan Deposit E-Money,†Coopetition J. Ilm. Manaj., vol. 13, no. 1, pp. 65–72, 2022, doi: 10.32670/coopetition.v13i1.896.
A. Damuri, U. Riyanto, H. Rusdianto, and M. Aminudin, “Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako,†J. Ris. Komput., vol. 8, no. 6, pp. 219–225, 2021, doi: 10.30865/jurikom.v8i6.3655.
R. Novendri, R. Andreswari, and O. N. Pratiwi, “Implementasi Data Mining Untuk Memprediksi Customer Churn Menggunakan Algoritma Naive Bayes,†in e-Proceeding of Engineering, 2021, vol. 8, no. 2, pp. 2762–2773.
B. T. R. Doni, S. Susanti, and A. Mubarok, “Penerapan Data Mining Untuk Klasifikasi Penyakit Hepatocellular Carcinoma Menggunakan Algoritma Naïve Bayes,†J. Responsif Ris. Sains dan Inform., vol. 3, no. 1, pp. 12–19, 2021, doi: 10.51977/jti.v3i1.403.
D. Nofriansyah, K. Erwansyah, and M. Ramadhan, “Penerapan Data Mining dengan Algoritma Naive Bayes Clasifier untuk Mengetahui Minat Beli Pelanggan terhadap Kartu Internet XL ( Studi Kasus di CV. Sumber Utama Telekomunikasi),†J. Saintikom, vol. 15, no. 2, pp. 81–92, 2018.
F. Y. Rahman, I. I. Purnomo, and N. Hijriana, “PENERAPAN ALGORITMA DATA MINING UNTUK KLASIFIKASI KUALITAS AIR,†Technologia, vol. 13, no. 3, pp. 228–232, 2022.
S. Ucha Putri, E. Irawan, and F. Rizky, “Implementasi Data Mining Untuk Prediksi Penyakit Diabetes Dengan Algoritma C4.5,†Januari, vol. 2, no. 1, pp. 39–46, 2021.
A. Y. Simanjuntak, I. S. E. S. Simatupang, and A. Anita, “IMPLEMENTASI DATA MINING MENGGUNAKAN METODE NAÃVE BAYES CLASSIFIER UNTUK DATA KENAIKAN PANGKAT DINAS KETENAGAKERJAAN KOTA MEDAN,†J. Sci. Soc. Res., vol. 5, no. 1, p. 85, 2022, doi: 10.54314/jssr.v5i1.804.
E. Y. Kodratillah, Daririn, and C. Naya, “PENERAPAN DATA MINING UNTUK PREDIKSI KELULUSAN SISWA MENGGUNAKAN ALGORITMA NAÃVE BAYES PADA SMK GARUDA,†J. Teknol. Pelita Bangsa, vol. 12, no. 4, pp. 33–40, 2021.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).

