Implementasi Algoritma K-Means Clustering Dalam Penilaian Kedisiplinan Siswa

Authors

  • Qorik Indah Mawarni Universitas Nusa Mandiri, Jakarta
  • Eko Setia Budi Universitas Nusa Mandiri, Jakarta

DOI:

https://doi.org/10.30865/json.v3i4.4242

Keywords:

K-Means, Clustering, Discipline, Microsoft Excel, Orange

Abstract

Education has a very important role for students, not just potential but noble character in the form of discipline, therefore it is necessary to group each school based on student discipline. Implementing a clustering system with the K-means method which is used to classify and determine the value of student discipline which produces a clustering output of student discipline that is beneficial for the school to prevent students from misbehaving early on. Analysis of data needs used in this study in the form of primary data obtained from a questionnaire given to students. The attributes used are presence, neatness and behavior. Student discipline assessment can be carried out using the k-means clustering method. This study applies the K-Means clustering algorithm method using Microsoft Excel 2013 and Orange which performs the data mining process. The results of the research implementation of the k-means clustering algorithm in student disciplines are divided into three clusters. From a sample of 133 students, 41 students were included in cluster one (C1), then 33 students were included in the second cluster (C2), and 59 students were included in cluster three (C3). The results of grouping the level of student discipline using the k-means method can be used as a reference or assessment of the discipline of each student.

 

Author Biography

Eko Setia Budi, Universitas Nusa Mandiri, Jakarta

Universitas Nusa Mandiri - Dosen

References

A. Sulistiyawati and E. Supriyanto, “Implementasi Algoritma K-means Clustring dalam Penetuan Siswa Kelas Unggulan,†J. Tekno Kompak, vol. 15, no. 2, p. 25, 2021, doi: 10.33365/jtk.v15i2.1162.

P. C. W. Randi, Rian, “IMPLEMENTASI DATA MINING PEMILIHAN PELANGGAN POTENSIAL MENGGUNAKAN ALGORITMA K-MEANS IMPLEMENTATION,†Pakistan Res. J. Manag. Sci., vol. 7, no. 5, pp. 1–2, 2018, [Online]. Available: http://content.ebscohost.com/ContentServer.asp?EbscoContent=dGJyMNLe80Sep7Q4y9f3OLCmr1Gep7JSsKy4Sa6WxWXS&ContentCustomer=dGJyMPGptk%2B3rLJNuePfgeyx43zx1%2B6B&T=P&P=AN&S=R&D=buh&K=134748798%0Ahttp://amg.um.dk/~/media/amg/Documents/Policies and Strategies/S

Y. Lase and E. Panggabean, “Implementasi Metode K-Means Clustering Dalam Sistem Pemilihan Jurusan Di SMK Swasta Harapan Baru,†J. Teknol. dan Ilmu Komput. Prima, vol. 2, no. 2, p. 43, 2019, doi: 10.34012/jutikomp.v2i2.723.

A. Manshur, “Strategi Pengembangan Kedisiplinan Siswa,†Al Ulya J. Pendidik. Islam, vol. 4, no. 1, pp. 16–28, 2019, doi: 10.36840/ulya.v4i1.207.

M. S. Retno tri vulandari, S.Si., Data mining Teori dan Aplikasi Rapidminer, 1st ed. Yogyakarta: GAVA MEDIA, 2017.

R. Wulan Sari, A. Wanto, and A. Perdana Windarto, “KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer) IMPLEMENTASI RAPIDMINER DENGAN METODE K-MEANS (STUDY KASUS: IMUNISASI CAMPAK PADA BALITA BERDASARKAN PROVINSI),†vol. 2, no. 1, pp. 224–230, 2018, [Online]. Available: http://ejurnal.stmik-budidarma.ac.id/index.php/komik

R. Muliono and Z. Sembiring, “Data Mining Clustering Menggunakan Algoritma K-Means Untuk Klasterisasi Tingkat Tridarma Pengajaran Dosen,†CESS (Journal Comput. Eng. Syst. Sci., vol. 4, no. 2, pp. 2502–714, 2019.

M. S. Nawawi, F. Sembiring, and A. Erfina, “Implementasi Algoritma K-Means Clustering Menggunakan Orange Untuk Penentuan Produk Busana Muslim Terlaris,†… Teknol. Inf. dan …, pp. 789–797, 2021, [Online]. Available: http://prosiding.unipma.ac.id/index.php/SENATIK/article/view/1837%0Ahttp://prosiding.unipma.ac.id/index.php/SENATIK/article/viewFile/1837/1723

M. H. Mhd. Gilang Suryanata, Deski Helsa Pane, “Implementasi Algoritma K-Means Untuk Mengukur Tingkat Kepuasan Siswa Terhadap Proses Pembelajaran,†J. Teknol. Sist. Inf. dan Sist. Komput. TGD, vol. 2, no. 2, pp. 118–125, 2019.

A. Aditya, I. Jovian, and B. N. Sari, “Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019,†J. Media Inform. Budidarma, vol. 4, no. 1, p. 51, 2020, doi: 10.30865/mib.v4i1.1784.

I. Parlina, A. P. Windarto, A. Wanto, and M. R. Lubis, “Memanfaatkan Algoritma K-Means Dalam Menentukan Pegawai Yang Layak Mengikuti Asessment Center,†Memanfaatkan Algoritm. K-Means Dalam Menentukan Pegawai Yang Layak Mengikuti Asessment Cent. Untuk Clust. Progr. Sdp, vol. 3, no. 1, pp. 87–93, 2018.

R. F. Saputra, Y. Agus Pranoto, and R. Primaswara P., “Implementasi Metode K-Means Clustering Pada Tes Psikologi Untuk Menentukan Kelompok Belajar Siswa Berbasis Mobile,†JATI (Jurnal Mhs. Tek. Inform., vol. 5, no. 1, pp. 328–333, 2021, doi: 10.36040/jati.v5i1.3290.

B. A. P. Martadiputra, “Populasi Dan Sempel,†2018.

Downloads

Published

2022-06-30

How to Cite

Mawarni, Q. I., & Budi, E. S. (2022). Implementasi Algoritma K-Means Clustering Dalam Penilaian Kedisiplinan Siswa. Jurnal Sistem Komputer Dan Informatika (JSON), 3(4), 522–528. https://doi.org/10.30865/json.v3i4.4242

Issue

Section

Articles