Implementasi Algoritma K-Means Clustering Dalam Penilaian Kedisiplinan Siswa
DOI:
https://doi.org/10.30865/json.v3i4.4242Keywords:
K-Means, Clustering, Discipline, Microsoft Excel, OrangeAbstract
Education has a very important role for students, not just potential but noble character in the form of discipline, therefore it is necessary to group each school based on student discipline. Implementing a clustering system with the K-means method which is used to classify and determine the value of student discipline which produces a clustering output of student discipline that is beneficial for the school to prevent students from misbehaving early on. Analysis of data needs used in this study in the form of primary data obtained from a questionnaire given to students. The attributes used are presence, neatness and behavior. Student discipline assessment can be carried out using the k-means clustering method. This study applies the K-Means clustering algorithm method using Microsoft Excel 2013 and Orange which performs the data mining process. The results of the research implementation of the k-means clustering algorithm in student disciplines are divided into three clusters. From a sample of 133 students, 41 students were included in cluster one (C1), then 33 students were included in the second cluster (C2), and 59 students were included in cluster three (C3). The results of grouping the level of student discipline using the k-means method can be used as a reference or assessment of the discipline of each student.Â
References
A. Sulistiyawati and E. Supriyanto, “Implementasi Algoritma K-means Clustring dalam Penetuan Siswa Kelas Unggulan,†J. Tekno Kompak, vol. 15, no. 2, p. 25, 2021, doi: 10.33365/jtk.v15i2.1162.
P. C. W. Randi, Rian, “IMPLEMENTASI DATA MINING PEMILIHAN PELANGGAN POTENSIAL MENGGUNAKAN ALGORITMA K-MEANS IMPLEMENTATION,†Pakistan Res. J. Manag. Sci., vol. 7, no. 5, pp. 1–2, 2018, [Online]. Available: http://content.ebscohost.com/ContentServer.asp?EbscoContent=dGJyMNLe80Sep7Q4y9f3OLCmr1Gep7JSsKy4Sa6WxWXS&ContentCustomer=dGJyMPGptk%2B3rLJNuePfgeyx43zx1%2B6B&T=P&P=AN&S=R&D=buh&K=134748798%0Ahttp://amg.um.dk/~/media/amg/Documents/Policies and Strategies/S
Y. Lase and E. Panggabean, “Implementasi Metode K-Means Clustering Dalam Sistem Pemilihan Jurusan Di SMK Swasta Harapan Baru,†J. Teknol. dan Ilmu Komput. Prima, vol. 2, no. 2, p. 43, 2019, doi: 10.34012/jutikomp.v2i2.723.
A. Manshur, “Strategi Pengembangan Kedisiplinan Siswa,†Al Ulya J. Pendidik. Islam, vol. 4, no. 1, pp. 16–28, 2019, doi: 10.36840/ulya.v4i1.207.
M. S. Retno tri vulandari, S.Si., Data mining Teori dan Aplikasi Rapidminer, 1st ed. Yogyakarta: GAVA MEDIA, 2017.
R. Wulan Sari, A. Wanto, and A. Perdana Windarto, “KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer) IMPLEMENTASI RAPIDMINER DENGAN METODE K-MEANS (STUDY KASUS: IMUNISASI CAMPAK PADA BALITA BERDASARKAN PROVINSI),†vol. 2, no. 1, pp. 224–230, 2018, [Online]. Available: http://ejurnal.stmik-budidarma.ac.id/index.php/komik
R. Muliono and Z. Sembiring, “Data Mining Clustering Menggunakan Algoritma K-Means Untuk Klasterisasi Tingkat Tridarma Pengajaran Dosen,†CESS (Journal Comput. Eng. Syst. Sci., vol. 4, no. 2, pp. 2502–714, 2019.
M. S. Nawawi, F. Sembiring, and A. Erfina, “Implementasi Algoritma K-Means Clustering Menggunakan Orange Untuk Penentuan Produk Busana Muslim Terlaris,†… Teknol. Inf. dan …, pp. 789–797, 2021, [Online]. Available: http://prosiding.unipma.ac.id/index.php/SENATIK/article/view/1837%0Ahttp://prosiding.unipma.ac.id/index.php/SENATIK/article/viewFile/1837/1723
M. H. Mhd. Gilang Suryanata, Deski Helsa Pane, “Implementasi Algoritma K-Means Untuk Mengukur Tingkat Kepuasan Siswa Terhadap Proses Pembelajaran,†J. Teknol. Sist. Inf. dan Sist. Komput. TGD, vol. 2, no. 2, pp. 118–125, 2019.
A. Aditya, I. Jovian, and B. N. Sari, “Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019,†J. Media Inform. Budidarma, vol. 4, no. 1, p. 51, 2020, doi: 10.30865/mib.v4i1.1784.
I. Parlina, A. P. Windarto, A. Wanto, and M. R. Lubis, “Memanfaatkan Algoritma K-Means Dalam Menentukan Pegawai Yang Layak Mengikuti Asessment Center,†Memanfaatkan Algoritm. K-Means Dalam Menentukan Pegawai Yang Layak Mengikuti Asessment Cent. Untuk Clust. Progr. Sdp, vol. 3, no. 1, pp. 87–93, 2018.
R. F. Saputra, Y. Agus Pranoto, and R. Primaswara P., “Implementasi Metode K-Means Clustering Pada Tes Psikologi Untuk Menentukan Kelompok Belajar Siswa Berbasis Mobile,†JATI (Jurnal Mhs. Tek. Inform., vol. 5, no. 1, pp. 328–333, 2021, doi: 10.36040/jati.v5i1.3290.
B. A. P. Martadiputra, “Populasi Dan Sempel,†2018.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).

