Klasifikasi Citra Daging Babi dan Daging Sapi Menggunakan Deep Learning Arsitektur ResNet-50 dengan Augmentasi Citra

Sarah Lasniari, Jasril Jasril, Suwanto Sanjaya, Febi Yanto, Muhammad Affandes

Abstract


Beef is an example of an animal protein-rich food. The consumption of meat in Indonesia is increasing year after year, in tandem with the country's growing population. Many traders purposefully combine beef and pork in order to maximize profits. With the naked eye, it's difficult to tell the difference between pork and beef. In Muslim-majority countries, the assurance of halal meat is crucial. This study uses Deep Learning with the Convolutional Neural Network (CNN) method and ResNet-50 with data augmentation to classify images of beef and pork. The original meat picture databases contain 457 images, however following the data augmentation process, there are 2742 images in total, divided into three classes. The distribution of training and test data is 90 percent:10 percent in the comparison test scenario between the two original data schemes and supplemented data. With an average of 87.64 % accuracy, 87.59 % recall, and 90.90 % precision, the Confusion Matrix is the best classification performance model. There was no evidence of overfitting based on observations from the visualization of the training and testing process.

Keywords


Augmentation; Convolutional Neural Networks; Deep Learning; Image Classification; Pork and Beef; ResNet

Full Text:

PDF

References


H. Himawan and W. Wiratama, “Different Types of Beef and Pord Using Histogram Texture and K-Means Clustering Method,†J. Appl. Intell. Syst., vol. 3, no. 1, pp. 20–27, 2018, doi: 10.33633/jais.v3i1.1892.

A. Bestari, J. A. Munawar, R. A. Nurrohmah, and A. Nurzamin, Statistik Peternakan dan Kesehatan Hewan 2018/ Livestock and Animal Health Statistics 2018. 2018.

Basito, B. Yudhistira, and D. A. Meriza, “Jurnal Teknologi dan Industri Pertanian Indonesia,†J. Teknol. dan Ind. Pertan. Indones., vol. 09, no. 01, pp. 10–16, 2018.

Paramita Setyaningrum, “Pemodelan Sistem Penelusuran Daging Sapi Potong Menggunakan Unified Modelling Language (UML),†J. Teknol. dan Ind. Pertan. Indones., vol. 10, no. 02, pp. 1–5, 2018.

J. Jasril and S. Sanjaya, “Learning Vector Quantization 3 (LVQ3) and Spatial Fuzzy C-Means (SFCM) for Beef and Pork Image Classification,†Indones. J. Artif. Intell. Data Min., vol. 1, no. 2, p. 60, 2018, doi: 10.24014/ijaidm.v1i2.5024.

L. Zhu and P. Spachos, “Towards Image Classification with Machine Learning Methodologies for Smartphones,†Mach. Learn. Knowl. Extr., vol. 1, no. 4, pp. 1039–1057, 2019, doi: 10.3390/make1040059.

F. F. Maulana and N. Rochmawati, “Klasifikasi Citra Buah Menggunakan Convolutional Neural Network,†J. Informatics Comput. Sci., vol. 1, no. 02, pp. 104–108, 2020, doi: 10.26740/jinacs.v1n02.p104-108.

U. Sudibyo, D. P. Kusumaningrum, E. H. Rachmawanto, and C. A. Sari, “Optimasi Algoritma Learning Vector Quantization (Lvq) Dalam Pengklasifikasian Citra Daging Sapi Dan Daging Babi Berbasis Glcm Dan Hsv,†Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 9, no. 1, pp. 1–10, 2018, doi: 10.24176/simet.v9i1.1943.

Neneng and Y. Fernando, “Klasifikasi Jenis Daging Berdasarkan Analisis Citra Tekstur Gray Level Co-Occurrence Matrices ( Glcm ) Dan Warna,†Semin. Nas. Sains dan Teknol. 2017, no. November, pp. 1–7, 2017.

Salsabila, A. Fitrianto, and B. Sartono, “Image Classification Modelling of Beef and Pork Using Convolutional Neural Network,†Int. J. Sci. Basic Appl. Res., vol. 57, no. 2, pp. 26–38, 2021, [Online]. Available: http://gssrr.org/index.php?journal=JournalOfBasicAndApplied.

Kade Bramasta Vikana Putra, I Putu Agung Bayupati, and Dewa Made Sri Arsa, “Klasifikasi Citra Daging Menggunakan Deep Learning dengan Optimisasi Hard Voting,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 656–662, 2021, doi: 10.29207/resti.v5i4.3247.

W. Setiawan, “Perbandingan Arsitektur Convolutional Neural Network Untuk Klasifikasi Fundus,†J. Simantec, vol. 7, no. 2, pp. 48–53, 2020, doi: 10.21107/simantec.v7i2.6551.

N. F. P. Setyono, D. Chahyati, and M. I. Fanany, “Betawi traditional food image detection using ResNet and DenseNet,†2018 Int. Conf. Adv. Comput. Sci. Inf. Syst. ICACSIS 2018, pp. 441–445, 2019, doi: 10.1109/ICACSIS.2018.8618175.

J. Sanjaya and M. Ayub, “Augmentasi Data Pengenalan Citra Mobil Menggunakan Pendekatan Random Crop, Rotate, dan Mixup,†J. Tek. Inform. dan Sist. Inf., vol. 6, no. 2, pp. 311–323, 2020, doi: 10.28932/jutisi.v6i2.2688.

L. H. Ganda and H. Bunyamin, “Penggunaan Augmentasi Data pada Klasifikasi Jenis Kanker Payudara dengan Model Resnet-34,†J. Strateg., vol. 3, no. 1, pp. 187–193, 2021.

K. H. Mahmud, Adiwijaya, and S. Al Faraby, “Klasifikasi Citra Multi-Kelas Menggunakan Convolutional Neural Network,†e-Proceeding Eng., vol. 6, no. 1, pp. 2127–2136, 2019.

Z. Zahisham, C. P. Lee, and K. M. Lim, “Food Recognition with ResNet-50,†IEEE Int. Conf. Artif. Intell. Eng. Technol. IICAIET 2020, pp. 0–4, 2020, doi: 10.1109/IICAIET49801.2020.9257825.

T. Y. Purnomo, PENERAPAN ALGORITMA RANDOM FOREST PADA KLASIFIKASI DAGING. 2020.

L. Perez and J. Wang, “The Effectiveness of Data Augmentation in Image Classification using Deep Learning,†2017, [Online]. Available: http://arxiv.org/abs/1712.04621.

D. Mishkin, N. Sergievskiy, and J. Matas, “Systematic evaluation of convolution neural network advances on the Imagenet,†Comput. Vis. Image Underst., vol. 161, pp. 11–19, 2017, doi: 10.1016/j.cviu.2017.05.007.

Suherman and I. Muzaky, “Analisis Penjualan Barang Laris Dan Kurang Laris Terhadap Percetakan Awfa Digitl Printing Menggunakan Metode Decision Tree Dengan Optimasi Algoritma Genetika,†J. Teknol. Pelita Bangsa, vol. 10, no. 9–1 (87), pp. 153–167, 2019.




DOI: https://doi.org/10.30865/json.v3i4.4167

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Sarah Lasniari, Jasril, Suwanto Sanjaya, Febi Yanto, Muhammad Affandes

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Sistem Komputer dan Informatika (JSON)
Dikelola oleh Universitas Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : jurnal.json@gmail.com


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.