Klasifikasi Kondisi Gizi Bayi Bawah Lima Tahun Pada Posyandu Melati Dengan Menggunakan Algoritma Decision Tree

Authors

  • Ahmad Zam Zami STMIK IKMI Cirebon, Cirebon
  • Odi Nurdiawan STMIK IKMI Cirebon, Cirebon
  • Gifthera Dwilestari STMIK IKMI Cirebon, Cirebon

DOI:

https://doi.org/10.30865/json.v3i3.3892

Keywords:

Malnutrition, Classification, Datamining, Infants, Healthy

Abstract

One of the health problems in Cirebon is about nutritional status. This happens because the increase and decrease in the number of children under five who experience nutritional status problems each year is uncertain. Toddlers are a group of people who are vulnerable to nutrition. The incidence of malnutrition if not addressed will cause a bad impact for toddlers. The impacts include death and chronic infection. Early detection of undernourished children (malnutrition and malnutrition) can be done with an examination of weight for age (W/U) to monitor the child's weight, the parameters used to calculate the nutritional status of toddlers include age, weight and height/length. To classify the nutritional status of children under five, a knowledge or scientific study is needed that can classify data based on the data from measurements and weighing. This study uses 8 criteria, namely Name, Address, Mother's Name, Gender, Age, Weight, Height, Status Classification. The accuracy results obtained are 98.86% with details, namely the Prediction Results of Malnutrition and it turns out that the True Malnutrition is 13 data. Poor Nutrition Prediction Results and turns out to be True Normal by 1 Data. Normal Prediction Results and it turns out to be True Malnutrition is 1 Data. Normal Prediction Results and turns out to be True Normal of 161 data. The results of the classification of infant levels based on age, infants aged 0 months to 10 months had normal nutrition, while infants aged 10 months to 19.5 months were prone to malnutrition for infants, and those aged more than 19.5 months had poor nutrition. normal.

References

Dimas Bayu Febriyanto. (2018). Implementasi Algoritma C4 . 5 Untuk Klasifikasi Tingkat Kepuasan Pembeli Online Shop. Jurnal Riset Komputer, 5(6), 569–575.

Hafizan, H., & Putri, A. N. (2020). Penerapan Metode Klasifikasi Decision Tree Pada Status Gizi Balita Di Kabupaten Simalungun. KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), 1(2), 68–72. https://doi.org/10.30645/kesatria.v1i2.23

Hutasoit, A. S., Tarigan, P., & Siagian, E. R. (2018). Implementasi Data Mining Klasifikasi Status Gizi Balita Pada Posyandu Medan Timur Dengan Menggunakan Metode C4.5. Jurnal Pelita Informatika, 17(2), 120–125.

Kusrini. (2007). Strategi Perancangan dan Pengelolaan Basis Data. CV Andi Offsite.

Larose, D. T. (2005). Discovering Knowledge In Data: An Introduction to Data mining. JohnWilley& Sons. Inc.

Makasar, S. D. (2019). PROCEDINGS Seminar Nasional Pengabdian Pada Masyarakat ( SNPMas ) 2019.

Oktafiano. (2016). Analisis Kepuasan Mahasiswa Terhadap Pelayanan Akademik Menggunakan Metode Algoritma C4.5 (Studi Kasus: Stmik Pringsewu). Jurnal Teknologi Informasi Magister Darmajaya, 2(01), 1–11.

Rahmawati, N., Novianto, Y., & Jasmir. (2020). Klasifikasi Kondisi Gizi Balita Menggunakan Metode Naive Bayes ( Studi Kasus Posyandu Melati IV). Jurnal Ilmiah Mahasiswa Teknik Informatika, 2(3), 257–268.

Susanti, M., Kom, M., & Kom, M. (2018). Prediksi Pengangkatan Karyawan Kontrak Menjadi Karyawan Tetap Menggunakan Decision Tree Pada PT . Baskara Cipta Putra. 6(1), 1–7.

]Swastina, L., Lareno, B., Perhitungan, T., & P, P. (2014). Bermasalah Menggunakan Decision Tree. Gema Aktualita, 3(2), 31–36.

Wahyudi, R., Orisa, M., & Vendyansyah, N. (2021). Penerapan Algoritma K-Nearest Neighbors Pada Klasifikasi. Jurnal Mahasiswa Teknik Informatika (JATI), 5(2).

Wiratama, F. R. (2017). Implementasi Algoritma C4 . 5 untuk Analisa Performa Pelayanan. Explora Informatika, 6, 127–135.

Downloads

Published

2022-03-31

How to Cite

Zami, A. Z., Nurdiawan, O., & Dwilestari, G. (2022). Klasifikasi Kondisi Gizi Bayi Bawah Lima Tahun Pada Posyandu Melati Dengan Menggunakan Algoritma Decision Tree. Jurnal Sistem Komputer Dan Informatika (JSON), 3(3), 305–310. https://doi.org/10.30865/json.v3i3.3892

Issue

Section

Articles