Prediksi Promosi Jabatan Karyawan JNE Pematangsiantar Dengan Algoritma C4.5
DOI:
https://doi.org/10.30865/json.v3i3.3763Keywords:
Data Mining, C4.5 Algorithm, Prediction, Job Promotion, EmployeeAbstract
This study predicts employee promotions using employee data from PT. JNE Pematangsiantar. The purpose of this research is to obtain a rule model in classifying predictions of promotions in the company. By knowing this prediction, decision makers can choose employees who will be promoted according to the rules that apply in the company. The method used in this research is Data Mining Algorithm C4.5, with employee data used as many as 20 employees. The variables used in this study include: Job Knowledge, Competence, Teamwork, Communication and Job Quality. The results of the study obtained 9 rules or rule models for this prediction classification with 5 rules with the final result being Promoted and 4 rules with the final result not being Promoted. With an accuracy rate of 71.43% and a classification error of 28.57%References
E. Susan, “Manajemen Sumber Daya Manusia,†J. Manaj. Pendidik. Islam, vol. 9, no. 2, pp. 952–962, 2019.
Sunarti, “Prediksi Promosi Jabatan Karyawan Dengan Algoritma C4.5 (Studi Kasus: Apartemen Senayan Jakarta),†Techno.Com, vol. 18, no. 4, pp. 288–298, 2019, doi: 10.33633/tc.v18i4.2471.
M. S. Ma’arif and L. Kartika, Kinerja. Bogor: PT Penerbit IPB Press, 2021.
R. S. Asa, S. Defit, and J. Na’am, “Identifikasi Penyaluran Zakat Menggunakan Algoritma C4.5 (Studi Kasus di BAZNAS Kabupaten Agam),†J. Sains dan Inform., vol. 5, no. 1, p. 50, 2019, doi: 10.22216/jsi.v5i1.4048.
N. Azwanti, “Analisa Algoritma C4.5 Untuk Memprediksi Penjualan Motor Pada Pt. Capella Dinamik Nusantara Cabang Muka Kuning,†Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 13, no. 1, p. 33, 2018, doi: 10.30872/jim.v13i1.629.
F. Syahputra, H. Hartono, and R. Rosnelly, “Penerapan Algoritma C4.5 Dalam Memprediksi Ketersediaan Uang Pada Mesin ATM,†J. Media Inform. Budidarma, vol. 5, no. 2, p. 556, 2021, doi: 10.30865/mib.v5i2.2933.
S. Febriani and H. Sulistiani, “Analisis Data Hasil Diagnosa Untuk Klasifikasi Gangguan Kepribadian Menggunakan Algoritma C4.5,†J. Teknol. dan Sist. Inf., vol. 2, no. 4, pp. 89–95, 2021.
E. P. Cynthia and E. Ismanto, “Metode Decision Tree Algoritma C.45 Dalam Mengklasifikasi Data Penjualan,†J. Ris. Sist. Inf. Dan Tek. Inform., vol. (3) Juli, no. July, pp. 1–13, 2018, [Online]. Available: http://tunasbangsa.ac.id/ejurnal/index.php/jurasik/article/download/60/pdf.
C. Anam and H. B. Santoso, “Perbandingan Kinerja Algoritma C4. 5 dan Naive Bayes untuk Klasifikasi Penerima Beasiswa,†Ejournal.Upm.Ac.Id, vol. 8, no. 1, pp. 2088–4591, 2018, [Online]. Available: https://ejournal.upm.ac.id/index.php/energy/article/view/111.
W. Julianto, R. Yunitarini, and M. K. Sophan, “Algoritma C4.5 Untuk Penilaian Kinerja Karyawan,†Scan, vol. Vo. IX, no. No. 2, pp. 33–39, 2014.
A. Rufiyanto, M. Rochcham, and A. Rohman, Isi Decision Tree. Yogyakarta: Deepublish Publisher, 2020.
D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,†J. Media Inform. Budidarma, vol. 4, no. 2, p. 437, 2020, doi: 10.30865/mib.v4i2.2080.
J. Eska, “Penerapan Data Mining Untuk Prediksi Penjualan Wallpaper Menggunakan Algoritma C4.5,†JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 2, pp. 9–13, 2018, doi: 10.31227/osf.io/x6svc.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).

