Komparasi Metode Decision Tree, KNN, dan SVM Untuk Menentukan Jurusan Di SMK

Novendra Adisaputra Sinaga, Ramadani Ramadani, Khoirunsyah Dalimunthe, Muhamad Sayid Amir Ali Lubis, Rika Rosnelly

Abstract


The selection of majors for prospective vocational students is the first step in determining the next career. The determination of the major aims so that students can be directed in receiving lessons based on the ability and talent of students and of course when they have graduated have the skills to get a job if they do not continue their studies. Siti Banun Sigambal Private Vocational School is located in Labuhanbatu Rantau Prapat. In realizing one of the missions of SMK, namely Realizing quality learning in Vocational High School, SMK Siti Banun in determining the Department by conducting tests. In classifying data mining techniques can be used, among others Decision Tree, K-Nearest Neighbors (KNN) and Support Vector Machine (SVM). This research was conducted to compare the performance of Decision Tree, KNN and SVM algorithms in determining majors. Of the 245-test data used obtained SVM has an accuracy value of 89%, precision 87% while KNN has an accuracy value of 84%, precision 81% and Decision Tree has an accuracy value of 78% and precision of 75%.

Keywords


Data mining; Classification; Decision Tree; Supervise Vector Machine; K-Nearest Neighbor

Full Text:

PDF

References


S. Widaningsih, “Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, Knn Dan Svm,†J. Tekno Insentif, vol. 13, no. 1, pp. 16–25, 2019, doi: 10.36787/jti.v13i1.78.

Z. Situmorang, “Analisis Menentukan Pengembangan Karir Siswa SMK Dengan Mengunakan Metode K-Nerest Neighbor ( K-NN ),†vol. 1, pp. 589–594, 2019.

M. Rahmayu and R. K. Serli, “Sistem Pendukung Keputusan Pemilihan Jurusan Pada Smk Putra Nusantara Jakarta Menggunakan Metode Analytical Hierarchy Process (Ahp),†Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 9, no. 1, pp. 551–564, 2018, [Online]. Available: https://jurnal.umk.ac.id/index.php/simet/article/view/2022.

S. M. Monalisa and F. Hadi, “Algoritma C4.5 dalam Penentuan Jurusan Siswa Baru,†Ultim. J. Tek. Inform., vol. 12, no. 2, pp. 108–113, 2020, doi: 10.31937/ti.v12i2.1838.

C. E. Puspita, O. N. Pratiwi, and E. Sutoyo, “PERBANDINGAN ALGORITMA KLASIFIKASI SUPPORT VECTOR PENDAHULUAN E-learning atau learning merupakan konsep belajar mengajar yang dapat dilakukan oleh mahasiswa dimana saja dan kapan saja . sendiri juga dapat mengembangkan kemandirian mahasiswa seperti pada p,†JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. VIII, no. 1, pp. 11–18, 2021.

Y. D. Atma and A. Setyanto, “Perbandingan algoritma c4.5 dan k-nn dalam identifikasi mahasiswa berpotensi drop out,†Metik J., vol. 2, no. 2, pp. 31–37, 2018.

P. Akurasi, C. Algoritma, and D. A. N. Naïve, “Perbandingan Akurasi Algoritma C4.5 dan Naïve Bayes untuk Deteksi Dini Gangguan Autisme pada Anak,†J. IKRA-ITH Inform., vol. 3, no. 1, pp. 119–128, 2019.

S. A. Naufal, A. Adiwijaya, and W. Astuti, “Analisis Perbandingan Klasifikasi Support Vector Machine (SVM) dan K-Nearest Neighbors (KNN) untuk Deteksi Kanker dengan Data Microarray,†JURIKOM (Jurnal Ris. Komputer), vol. 7, no. 1, p. 162, 2020, doi: 10.30865/jurikom.v7i1.2014.

C. Paramitha Lubis, R. Rosnelly, and Z. Situmorang, “PENERAPAN METODE NAÃVE BAYES DAN C4.5 PADA PENERIMAAN PEGAWAI DI UNIVERSITAS POTENSI UTAMA,†CSRID J., vol. 12, pp. 51–63, 2020, doi: 10.22303/csrid.12.1.2020.51-63.

P. Bidang Komputer Sains dan Pendidikan Informatika, D. Akademi Perekam dan Informasi Kesehatan Iris Padang Jl Gajah Mada No, and S. Barat, “Data Mining : Klasifikasi Menggunakan Algoritma C4.5,†J. Edik Inform., vol. 2, pp. 213–219, 2019.

M. Azhari, Z. Situmorang, and R. Rosnelly, “Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes,†J. Media Inform. Budidarma, vol. 5, no. 2, p. 640, 2021, doi: 10.30865/mib.v5i2.2937.

D. I. Ramadhan, B. Santoso, D. Teknik, I. Teknologi, and S. Nopember, “Analisis Kinerja Peramalan dan Klasifikasi Permintaan Auto Parts Berbasis Data Mining,†J. Tek. ITS, vol. 9, no. 2, pp. 162–169, 2020.

B. Budiman, “Perbandingan Algoritma Klasifikasi Data Mining untuk Penelusuran Minat Calon Mahasiswa Baru,†Nuansa Inform., vol. 15, no. 2, pp. 37–52, 2021, doi: 10.25134/nuansa.v15i2.4162.

N. Nuraeni, “Klasifikasi Data Mining untuk Prediksi Potensi Nasabah dalam Membuat Deposito Berjangka,†J. Ilm. Intech Inf. Technol. J. …, vol. 3, no. 01, pp. 65–74, 2021, [Online]. Available: http://jurnal.umus.ac.id/index.php/intech/article/view/418%0Ahttp://jurnal.umus.ac.id/index.php/intech/article/download/418/281.

S. Samsir, J. H. P. Sitorus, Zulkifli, Z. Ritonga, F. A. Nasution, and R. Watrianthos, “Comparison of machine learning algorithms for chest X-ray image COVID-19 classification,†J. Phys. Conf. Ser., vol. 1933, no. 1, p. 012040, 2021, doi: 10.1088/1742-6596/1933/1/012040

M. Nasution, D. Irmayani, R. Watrianthos, S. Suryadi, and I. R. Munthe, “Comparative Analysis Of Data Mining Using The Rought Set Method With K-Means Method,†Int. J. Sci. Technol. Res., vol. 8, no. 05, pp. 38–40, 2019, [Online]. Available: http://www.ijstr.org/final-print/may2019/Comparative-Analysis-Of-Data-Mining-Using-The-Rought-Set-Method-With-K-means-Method.pdf

M. Bobbi, K. Nasution, S. Suryadi, and R. Watrianthos, “Model Pengenalan Suara Teks Bebas Menggunakan Algoritma Support Vector Machine,†J. Media Inform. Budidarma, vol. 4, no. 4, pp. 1249–1255, 2020, doi: 10.30865/mib.v4i4.2436

H. Hozairi, A. Anwari, and S. Alim, “Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes,†Netw. Eng. Res. Oper., vol. 6, no. 2, p. 133, 2021, doi: 10.21107/nero.v6i2.237.




DOI: https://doi.org/10.30865/json.v3i2.3598

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Novendra Adisaputra Sinaga, Ramadani Ramadani, Khoirunsyah Dalimunthe, Muhamad Sayid Amir Ali Lubis, Rika Rosnelly

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Sistem Komputer dan Informatika (JSON)
Dikelola oleh Universitas Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : lppm.ubd@gmail.com


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.