Prediksi Status Penanganan Pasien Covid-19 dengan Algoritma Naïve Bayes Classifier di Provinsi Riau

Authors

  • Dedi Pramana Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru
  • Mustakim Mustakim Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru

DOI:

https://doi.org/10.30865/json.v3i2.3570

Keywords:

Covid-19, Classification, Naive Bayes Classifier, Pandemic, Prediction

Abstract

Covid-19 is a new virus that emerged at the end of 2019 in Wuhan city, China.  This virus continues to grow until it spreads to various countries in the world.  As a result, there has been a large accumulation of Covid-19 patients in every hospital in every country affected by Covid-19.  Covid-19 patients receiving treatment in hospitals have different conditions and severity, this of course affects the different mechanism for handling patients.  Therefore, technological support is needed to help classify the treatment of patients so that they can be concentrated on patients who can be treated with isoman treatment or must be referred to hospital.  This research was conducted to build a model based on a dataset of patients infected with Covid-19 using the Naive Bayes Classifier algorithm.  The model built can predict the treatment status of patients based on age and gender who have the highest probability of being treated in an isoman way or having to be referred to hosspital. Data used is applied using Rapidminer with validation used is spill validation with the ratio of training data is 70% and test data is 30%.  The results of this research indicate classification using the Naive Bayes Classifier algorithm has a high level of accuracy in classifying patient status data, rately 83.33%.

References

D. Y. Liliana, H. Maulana, and A. Setiawan, “Data Mining untuk Prediksi Status Pasien Covid-19 dengan Pengklasifikasi Naïve Bayes,†vol. 7, no. 1, pp. 48–53, 2021.

A. T. diviana agnia Mirantika, Nita, “Volume 15 Nomor 2 , Juli 2021 PENERAPAN ALGORITMA K-MEANS CLUSTERING UNTUK PENGELOMPOKAN PENYEBARAN COVID-19 JURNAL NUANSA INFORMATIKA Volume 15 Nomor 2 , Juli 2021,†vol. 15, pp. 92–98, 2021.

M. Mulyadi, “Partisipasi Masyarakat Dalam Penanganan Penyebaran Covid-19,†Pus. Penelit. Badan Keahlian DPR RI, vol. XII, no. 8, pp. 13–18, 2020.

A. Wardani and Y. Ayriza, “Analisis Kendala Orang Tua dalam Mendampingi Anak Belajar di Rumah Pada Masa Pandemi Covid-19,†J. Obs. J. Pendidik. Anak Usia Dini, vol. 5, no. 1, p. 772, 2020, doi: 10.31004/obsesi.v5i1.705.

E. Supriatna, “Wabah Corona Virus Disease (Covid 19) Dalam Pandangan Islam,†SALAM J. Sos. dan Budaya Syar-i, vol. 7, no. 6, 2020, doi: 10.15408/sjsbs.v7i6.15247.

F. Fitriana, E. Utami, and H. Al Fatta, “Analisis Sentimen Opini Terhadap Vaksin Covid - 19 pada Media Sosial Twitter Menggunakan Support Vector Machine dan Naive Bayes,†J. Komtika (Komputasi dan Inform., vol. 5, no. 1, pp. 19–25, 2021, doi: 10.31603/komtika.v5i1.5185.

O. D. Rahmanto and C. Manto, “Analisis Teologi Kesehatan Tentang Pandemi Virus Covid-19 Perspektif Al-Qur’an,†Mashdar J. Stud. Al-Qur’an dan Hadis, vol. 3, no. 1, pp. 167–188, 2021, [Online]. Available: https://ejournal.uinib.ac.id/jurnal/index.php/mashdar/article/view/2405.

G. D. Rembulan, T. Wijaya, D. Palullungan, K. N. Alfina, and M. Qurthuby, “Kebijakan Pemerintah Mengenai Coronavirus Disease (COVID-19) di Setiap Provinsi di Indonesia Berdasarkan Analisis Klaster,†JIEMS (Journal Ind. Eng. Manag. Syst., vol. 13, no. 2, 2020, doi: 10.30813/jiems.v13i2.2280.

L. Rosyanti and I. Hadi, “Dampak Psikologis dalam Memberikan Perawatan dan Layanan Kesehatan Pasien COVID-19 pada Tenaga Profesional Kesehatan,†Heal. Inf. J. Penelit., vol. 12, no. 1, pp. 107–130, 2020, doi: 10.36990/hijp.vi.191.

D. Ekawaty, “Pengalaman Pasien Covid-19 yang Menjalani Perawatan di Rumah Sakit Darurat Covid Wisma Atlet Jakarta,†J. Keperawatan Silampari, vol. 4, no. 2, pp. 698–705, 2021, doi: 10.31539/jks.v4i2.1922.

Z. I. Alfianti, U. Bina, S. Informatika, K. Kabupaten, J. Barat, and D. Mining, “ALGORITMA K-MEANS,†pp. 111–122, 2020.

M. C. Untoro, L. Anggraini, M. Andini, H. Retnosari, and M. A. Nasrulloh, “Penerapan metode k-means clustering data COVID-19 di Provinsi Jakarta,†Teknologi, vol. 11, no. 2, pp. 59–68, 2021, doi: 10.26594/teknologi.v11i2.2323.

A. Solichin and K. Khairunnisa, “Klasterisasi Persebaran Virus Corona (Covid-19) Di DKI Jakarta Menggunakan Metode K-Means,†Fountain Informatics J., vol. 5, no. 2, p. 52, 2020, doi: 10.21111/fij.v5i2.4905.

Sefrika, “Pemilihan Kriteria Penerima Vaksin Dengan Metode TOPSIS,†J. Sains Komput. Inform., vol. 5, pp. 93–98, 2021.

“Informasi Terkini COVID-19 di Indonesia | KawalCOVID19.†https://kawalcovid19.id/ (accessed Sep. 09, 2021).

Kompas.com, “Daftar 10 Daerah dengan Kasus Covid-19 Tertinggi di Indonesia Halaman 2 - Kompas.com.†https://www.kompas.com/tren/read/2021/06/06/084600065/daftar-10-daerah-dengan-kasus-covid-19-tertinggi-di-indonesia?amp=1&page=2&jxconn=1*jst31j*other_jxampid*VUtoQUthdzFmOF9NclIxTlFWelNibjBubDdRTG9BS2VsN1JmQVFrcjU3bEdraGZ0S3czdGVETzlRLS02Ui13eg (accessed Sep. 11, 2021).

“Riau Tanggap Virus Corona | Pemprov Riau.†https://corona.riau.go.id/ (accessed Sep. 28, 2021).

M. Sukmana, M. Aminuddin, and D. Nopriyanto, “Indonesian government response in COVID-19 disaster prevention,†East Afrian Sch. J. Med. Sci., vol. 3, no. 3, pp. 81–6, 2020, doi: 10.36349/EASMS.2020.v03i03.025.

M. Abed, S. Abdeen, and V. Kehyayan, “Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information ,†no. January, 2020.

K. K. Lella and A. Pja, “Automatic diagnosis of COVID-19 disease using deep convolutional neural network with multi-feature channel from respiratory sound data: Cough, voice, and breath,†Alexandria Eng. J., 2021, doi: 10.1016/j.aej.2021.06.024.

A. Darmawan, N. Kustian, and W. Rahayu, “Implementasi Data Mining Menggunakan Model SVM untuk Prediksi Kepuasan Pengunjung Taman Tabebuya,†STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 2, no. 3, p. 299, 2018, doi: 10.30998/string.v2i3.2439.

F. Syarifuddin, M. Misdram, A. A. Widodo, P. S. Informatika, and U. M. Pasuruan, “Klasifikasi Data Set Virus Corona Menggunakan Metode Naïve Bayes Classifier,†J. SPIRIT, vol. 12, no. 2, pp. 46–52, 2020.

A. Fattah and R. Setyadi, “Efektifitas Mekanisme Tata Kelola Teknologi Informasi Terhadap Inovasi Ti Dan Kinerja Ti,†J. Teknol. Inf. dan Pendidik., vol. 12, no. 2, pp. 8–12, 2019, doi: 10.24036/tip.v12i2.217.

W. Muslehatin, M. Ibnu, and Mustakim, “Penerapan Naïve Bayes Classification untuk Klasifikasi Tingkat Kemungkinan Obesitas Mahasiswa Sistem Informasi UIN Suska Riau,†Semin. Nas. Teknol. Informasi, Komun. dan Ind., pp. 250–256, 2017.

A. Harun and D. P. Ananda, “Analysis of Public Opinion Sentiment About Covid-19 Vaccination in Indonesia Using Naïve Bayes and Decission Tree Analisa Sentimen Opini Publik Tentang Vaksinasi Covid-19 di Indonesia Menggunakan Naïve Bayes dan Decission Tree,†Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. April, pp. 58–63, 2021.

I. G. Bendesa Subawa, “Teorema Bayes Ke Kelulusan,†vol. 8, no. August, pp. 227–236, 2019.

S. Rizal, P. Studi, T. Informatika, and U. Yudharta, “Penerapan Algoritma Naïve Bayes Untuk Prediksi Penerimaan Siswa Baru Di Smk Al-Amien Wonorejo,†Explor. IT J. Keilmuan dan Apl. Tek. Inform., vol. 10, no. 1, pp. 14–21, 2018, doi: 10.35891/explorit.v10i1.1671.

Y. Mardi, “Data Mining : Klasifikasi Menggunakan Algoritma C4.5,†Edik Inform., vol. 2, no. 2, pp. 213–219, 2017, doi: 10.22202/ei.2016.v2i2.1465.

H. Annur, “Klasifikasi Masyarakat Miskin Menggunakan Metode Naive Bayes,†Ilk. J. Ilm., vol. 10, no. 2, pp. 160–165, 2018, doi: 10.33096/ilkom.v10i2.303.160-165.

R. N. Devita, H. W. Herwanto, and A. P. Wibawa, “Perbandingan Kinerja Metode Naive Bayes dan K-Nearest Neighbor untuk Klasifikasi Artikel Berbahasa indonesia,†J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 4, p. 427, 2018, doi: 10.25126/jtiik.201854773.

D. T. Yudistira, “Penentuan Klasifikasi Status Gizi Orang Dewasa Dengan Algoritma Naïve Bayes Classification ( Studi Kasus Puskesmas Jiken ),†Dok. Karya Ilm., pp. 1–10, 2014.

Suherman and I. Muzaky, “Analisis Penjualan Barang Laris Dan Kurang Laris Terhadap Percetakan Awfa Digitl Printing Menggunakan Metode Decision Tree Dengan Optimasi Algoritma Genetika,†J. Teknol. Pelita Bangsa, vol. 10, no. 9–1 (87), pp. 153–167, 2019.

Dwi Untari, K. Hastuti, E. Y. Hidayat, Dwi Untari, N. Limão, and N. Y. L. Gaol, “Data Mining untuk Menganalisa Prediksi Mahasiswa Berpotensi Non-Aktif Menggunaka Metode Decision Tree C4.5,†Fak. Ilmu Komput. Univ. Dian Nuswantoro, vol. 2013, no. November, pp. 31–48, 2010.

Downloads

Published

2021-12-31

How to Cite

Pramana, D., & Mustakim, M. (2021). Prediksi Status Penanganan Pasien Covid-19 dengan Algoritma Naïve Bayes Classifier di Provinsi Riau. Jurnal Sistem Komputer Dan Informatika (JSON), 3(2), 202–208. https://doi.org/10.30865/json.v3i2.3570