https://eurogeojournal.eu/ https://jurnal.pendidikanbiologiukaw.ac.id/
https://e-kerja.bnpp.go.id/bkp/https://journal.dkpp.go.id/wow/https://ppid.dkpp.go.id/_fungsi/dana/https://jurnal.pendidikanbiologiukaw.ac.id/https://e-kerja.bnpp.go.id/Pengawas/demo/https://jos.unsoed.ac.id/stats/2024/https://journal.umkendari.ac.id/dm/https://jurnal.radenfatah.ac.id/demo/https://journal.ar-raniry.ac.id/lap/https://sipeg.ui.ac.id/dm/https://e-kerja.bnpp.go.id/Pengawas/dana/
slot gacor 2025slot gacor 2025slot gacor 2025slot gacor 2025slot gacor 2025slot gacor
Proyeksi Data dan Analisis Sentimen Penggunaan Vaksin di Kabupaten Indragiri Hulu Berbasis Machine Learning | Andriawan | Jurnal Sistem Komputer dan Informatika (JSON)

Proyeksi Data dan Analisis Sentimen Penggunaan Vaksin di Kabupaten Indragiri Hulu Berbasis Machine Learning

Ahmad Rizky Andriawan, Mustakim Mustakim

Abstract


Sentiment analysis is research that processed used computer that comes from opinion and emotion wich realized in shape of text. The method that used to analyze sentiment is using Text Mining used for mining the text in order to get comprehension about the important aspect. Text Mining done at social media Twitter. This research analyze public sentiment related with vaccination. Step of Preprocessing contains Crawling Data, Cleaning, Filtering, Stemming, TF-IDF, and labeling. Result from labeling and percentage calculation get percentage that Positive Sentiment is 29.17%, Negative Sentiment is 55.09% percentage, and Neutral is 15.74% percentage. Could be seen that Indonesian public still given many Negative Comments related with vaccination. Result of K-NN calculation with K-9 generate the accuracy is 84.53%.

Keywords


Data Mining; K-Nearest Neighbor (K-NN); Text Mining; Twitter

Full Text:

PDF

References


S. Sindi et al., “ANALISIS ALGORITMA K-MEDOIDS CLUSTERING DALAM PENGELOMPOKAN PENYEBARAN COVID-19 DI INDONESIA,†Jurnal Teknologi Informasi, vol. 4, no. 1, 2020.

Satuan Tugas penanganan COVID-19, “Peta Sebaran Covid-19,†Satuan Tugas penanganan COVID-19, 2021. https://covid19.go.id/peta-sebaran-covid19 (accessed Sep. 28, 2021).

Pemerintah Provinsi Riau, “Data & Statistik,†Pemerintah Provinsi Riau, 2021. https://corona.riau.go.id/data-statistik (accessed Sep. 28, 2021).

N. P. Astuti, E. G. Z. Nugroho, J. C. Lattu, I. R. Potempu, and D. A. Swandana, “Persepsi Masyarakat terhadap Penerimaan Vaksinasi Covid-19: Literature Review,†Jurnal Keperawatan, vol. 13, no. 3, pp. 569–580, Jul. 2021, doi: 10.32583/KEPERAWATAN.V13I3.1363.

I. Zulfa and E. Winarko, “Sentimen Analisis Tweet Berbahasa Indonesia Dengan Deep Belief Network,†IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 11, no. 2, 2017, doi: 10.22146/ijccs.24716.

T. Zhang, B. Li, and N. Hua, “Chinese cultural theme parks: text mining and sentiment analysis,†Journal of Tourism and Cultural Change, 2021, doi: 10.1080/14766825.2021.1876077.

G. A. Buntoro, “Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter,†2017.

A. K. Fauziyyah, “ANALISIS SENTIMEN PANDEMI COVID19 PADA STREAMING TWITTER DENGAN TEXT MINING PYTHON,†Jurnal Ilmiah SINUS, vol. 18, no. 2, 2020, doi: 10.30646/sinus.v18i2.491.

Mustakim and G. Oktaviani, “Algoritma K-Nearest Neighbor Classification Sebagai Sistem Prediksi Predikat Prestasi Mahasiswa,†Jurnal Sains, Teknologi dan Industri, vol. 13, no. 2, pp. 195–202, 2016, [Online]. Available: http://ejournal.uin-suska.ac.id/index.php/sitekin

I. Kamila, U. Khairunnisa, and Mustakim, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau,†Jurnal Ilmiah Rekayasa dan Manajemen Sistem Informasi, vol. 5, no. 1, pp. 119–125, 2019.

R. Harun, K. Chandra Pelangi, and Y. Lasena, “PENERAPAN DATA MINING UNTUK MENENTUKAN POTENSI HUJAN HARIAN DENGAN MENGGUNAKAN ALGORITMA K NEAREST NEIGHBOR (KNN),†Online, 2020. [Online]. Available: http://e-journal.stmiklombok.ac.id/index.php/misi

A. Ramadhan, Z. Efendi, and Mustakim, “Perbandingan K-Means dan Fuzzy C-Means untuk Pengelompokan Data User Knowledge Modeling,†Pekanbaru, May 2017.

T. W. D. Sari, “Penerapan Text Mining Dengan Menggunakan Algoritma TF-IF Untuk Klasifikasi Genre Novel,†Pelita Informatika: Informasi dan Informatika, vol. 10, no. 1, pp. 29–37, Aug. 2021, Accessed: Dec. 24, 2021. [Online]. Available: http://www.stmik-budidarma.ac.id/ejurnal/index.php/pelita/article/view/3142

Asril Hamdani, Mustakim, and Kamila Insanul, “Klasifikasi Dokumen Tugas Akhir Berbasis Text Mining menggunakan Metode Naïve Bayes Classifier dan K-Nearest Neighbor,†2019.

A. Hidayat, M. Zakiy Fauzi, Syukra Imaduddin, and Mustakim, “Implementasi Algoritma K-Nearest Neighbor dan Probabilistic Neural Network untuk Analisis Opini Masyarakat Terhadap Toko Online di Indonesia,†2019.

S. Qaiser and R. Ali, “Text Mining: Use of TF-IDF to Examine the Relevance of Words to Documents,†International Journal of Computer Applications, vol. 181, no. 1, 2018, doi: 10.5120/ijca2018917395.

A. M. Habibi and R. R. Santika, “Implementasi Algoritma K-Nearest Neighbor dalam Menentukan Jurusan Menggunakan Metode Euclidean Distance Berbasis Web Pada SMP Setia Gama,†vol. 3, pp. 7–14, 2020.

Dmitry Vasilyev and Andrey Rashich, SEFDM-signals Euclidean Distance Analysis. IEEE, 2018.

Abidin Yumetri and Iska Zikri Neni, “SOSIALISASI VAKSINASI COVID-19 TERHADAP KERAGUAN MASYARAKAT ATAS EFEK NEGATIF PASCA VAKSIN,†2020.

J. Eka Sembodo, E. Budi Setiawan, and Z. Abdurahman Baizal, “Data Crawling Otomatis pada Twitter,†2016. doi: 10.21108/indosc.2016.111.




DOI: https://doi.org/10.30865/json.v3i2.3569

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Ahmad Rizky Andriawan, Mustakim Mustakim

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Jurnal Sistem Komputer dan Informatika (JSON)
Dikelola oleh Universitas Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : lppm.ubd@gmail.com


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.