Implementasi Jaringan Saraf Tiruan Sebagai Alat Bantu Deteksi Bakteri Staphylococcus Aureus Pada Sayuran
DOI:
https://doi.org/10.30865/json.v1i3.2160Keywords:
Backpropagation, Bacteria, ImageAbstract
This study aims to aid bacterial detection through bacterial imagery in vegetables to help identify Staphylococcus aureus bacteria in vegetables. Input to the software is the image of bacteria in vegetables. Bacterial image is processed by grayscaling, thresholding and image segmentation processing methods so that the image characteristics that represent bacteria in vegetables are obtained. One technique that can be used as a tool to observe Staphylococcus aureus is to use artificial neural networks and combine them with image processing. Artificial neural networks function as information processing by inferring information from data that has been received and as a decision maker for data that has been studied. Image processing is the science of manipulating images, which includes techniques to improve or reduce image quality. The detection process using software that has been built can be done well. The process is carried out by matching the value of the exercise cutra backpropagation vector with the image to be detected.
References
Jawetz, E., J.L. Melnick., E.A. Adelberg., G.F. Brooks., J.S. Butel., dan S.A. Morse. 2004. Mikrobiologi Kedokteran. Terjemahan H.Hartanto & R.N.Elferia. Edisi ke-23. Penerbit Buku Kedokteran EGC. Jakarta
Delimunthe, F.H., 2016. Perancangan Aplikasi Mengidentifikasi Penyakit Mata Dengan Menggunakan Metode Backpropagation. Jurnal Ris
Rahayu, D., Wihandika, R.C., Perdana, R.,S. 2018. Implementasi Metode Backpropagation Untuk Klasifikasi Kenaikan Harga Minyak Kelapa Sawit. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer. Vol. 2, (4).
Wuryandari, M. D., & Afrianto, I. (2012). Perbandingan Metode Jaringan Syaraf Tiruan Backpropagation dan Learning Vector Quantization pada Pengenalan Wajah. Jurnal Komputer dan Informatika (KOMPUTA) Universitas Komputer Indonesia, Edisi. I, Vol. 1,
Koes Irianto. 2006. Mikrobiologi Menguak Dunia Mikroorganisme. Jilid 2.Jakarta.
Syuhada, 2015. Realisasi Pengenalan Plat Nomor Kendaraan Dengan Metode Histogram Citra Dan Jaringan Syaraf Tiruan Backpropagation. Skripsi Universitas Lampung Bandar Lampung
Russ J.C., 2002, The image Processing Handbook, Third Edition. CRC Press, CRC Press LLC.
Putra., D., Pengolahan Citra Digital, Penerbit Andi, Yogyakarta, 2013.
Munir, R., 2004, Pengolahan Citra Digital dengan Pendekatan Algoritmik, Bandung: Informatika.
Fitryadi, K., & Sutikno. (2016). Pengenalan Jenis Golongan Darah Menggunakan Jaringan Syaraf Tiruan Perceptron. Jurnal Masyarakat Informatika, Universitas Diponegoro, Vol. 7 No. 1, ISSN: 2086-4930,
Puspitaningrum, D.. 2006. Pengantar Jaringan Syaraf Tiruan. Yogyakarta: Penerbit Andi.
Entin, (12,Jan.2013). Available : http://entin.lecturer.pens.ac.id
Tarik, H., Kodad, M., & Miloud, J. E. (2014). Digital Movements Images Restoring by Artificial Neural Netwoks. Computer Science and Engineering, DOI: 10.5923
Hermawan, 2006, Jaringan Saraf Tiruan Teori dan Aplikasi Yogyakarta: Andi.
Kusmaryanto, 2014. Jaringan Saraf Tiruan Backpropagation untuk Pengenalan Wajah Metode Ekstraksi Fitur Berbasis Histogram. Jurnal EECCIS Vol. 8, (2)
Redjeki, S. (2013). Perbandingan Algoritma Backpropagation dan K-Nearest Neighbor (K-NN) untuk Identifikasi Penyakit. Seminar Nasional Aplikasi Teknologi Informasi (SNATI), ISSN: 1907-5022
Siang, Jong Jek. 2005. Jaringan Saraf Tiruan dan Pemorogramannya Menggunakan Matlab. Yogyakarta :ANDI
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).

