Implementasi Jaringan Saraf Tiruan Sebagai Alat Bantu Deteksi Bakteri Staphylococcus Aureus Pada Sayuran

Authors

  • Ali Rahmad Pohan STMIK Budi Darma

DOI:

https://doi.org/10.30865/json.v1i3.2160

Keywords:

Backpropagation, Bacteria, Image

Abstract

This study aims to aid bacterial detection through bacterial imagery in vegetables to help identify Staphylococcus aureus bacteria in vegetables. Input to the software is the image of bacteria in vegetables. Bacterial image is processed by grayscaling, thresholding and image segmentation processing methods so that the image characteristics that represent bacteria in vegetables are obtained. One technique that can be used as a tool to observe Staphylococcus aureus is to use artificial neural networks and combine them with image processing. Artificial neural networks function as information processing by inferring information from data that has been received and as a decision maker for data that has been studied. Image processing is the science of manipulating images, which includes techniques to improve or reduce image quality. The detection process using software that has been built can be done well. The process is carried out by matching the value of the exercise cutra backpropagation vector with the image to be detected.

Author Biography

Ali Rahmad Pohan, STMIK Budi Darma

Teknik Informatika

References

Jawetz, E., J.L. Melnick., E.A. Adelberg., G.F. Brooks., J.S. Butel., dan S.A. Morse. 2004. Mikrobiologi Kedokteran. Terjemahan H.Hartanto & R.N.Elferia. Edisi ke-23. Penerbit Buku Kedokteran EGC. Jakarta

Delimunthe, F.H., 2016. Perancangan Aplikasi Mengidentifikasi Penyakit Mata Dengan Menggunakan Metode Backpropagation. Jurnal Ris

Rahayu, D., Wihandika, R.C., Perdana, R.,S. 2018. Implementasi Metode Backpropagation Untuk Klasifikasi Kenaikan Harga Minyak Kelapa Sawit. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer. Vol. 2, (4).

Wuryandari, M. D., & Afrianto, I. (2012). Perbandingan Metode Jaringan Syaraf Tiruan Backpropagation dan Learning Vector Quantization pada Pengenalan Wajah. Jurnal Komputer dan Informatika (KOMPUTA) Universitas Komputer Indonesia, Edisi. I, Vol. 1,

Koes Irianto. 2006. Mikrobiologi Menguak Dunia Mikroorganisme. Jilid 2.Jakarta.

Syuhada, 2015. Realisasi Pengenalan Plat Nomor Kendaraan Dengan Metode Histogram Citra Dan Jaringan Syaraf Tiruan Backpropagation. Skripsi Universitas Lampung Bandar Lampung

Russ J.C., 2002, The image Processing Handbook, Third Edition. CRC Press, CRC Press LLC.

Putra., D., Pengolahan Citra Digital, Penerbit Andi, Yogyakarta, 2013.

Munir, R., 2004, Pengolahan Citra Digital dengan Pendekatan Algoritmik, Bandung: Informatika.

Fitryadi, K., & Sutikno. (2016). Pengenalan Jenis Golongan Darah Menggunakan Jaringan Syaraf Tiruan Perceptron. Jurnal Masyarakat Informatika, Universitas Diponegoro, Vol. 7 No. 1, ISSN: 2086-4930,

Puspitaningrum, D.. 2006. Pengantar Jaringan Syaraf Tiruan. Yogyakarta: Penerbit Andi.

Entin, (12,Jan.2013). Available : http://entin.lecturer.pens.ac.id

Tarik, H., Kodad, M., & Miloud, J. E. (2014). Digital Movements Images Restoring by Artificial Neural Netwoks. Computer Science and Engineering, DOI: 10.5923

Hermawan, 2006, Jaringan Saraf Tiruan Teori dan Aplikasi Yogyakarta: Andi.

Kusmaryanto, 2014. Jaringan Saraf Tiruan Backpropagation untuk Pengenalan Wajah Metode Ekstraksi Fitur Berbasis Histogram. Jurnal EECCIS Vol. 8, (2)

Redjeki, S. (2013). Perbandingan Algoritma Backpropagation dan K-Nearest Neighbor (K-NN) untuk Identifikasi Penyakit. Seminar Nasional Aplikasi Teknologi Informasi (SNATI), ISSN: 1907-5022

Siang, Jong Jek. 2005. Jaringan Saraf Tiruan dan Pemorogramannya Menggunakan Matlab. Yogyakarta :ANDI

Downloads

Published

2020-05-20

How to Cite

Pohan, A. R. (2020). Implementasi Jaringan Saraf Tiruan Sebagai Alat Bantu Deteksi Bakteri Staphylococcus Aureus Pada Sayuran. Jurnal Sistem Komputer Dan Informatika (JSON), 1(3), 258–264. https://doi.org/10.30865/json.v1i3.2160

Issue

Section

Articles