Implementasi Data Mining Dalam Memprediksi Jumlah Pinjaman Dengan Algoritma C4.5 Pada Kopdit CU Damai Sejahtera
DOI:
https://doi.org/10.30865/json.v1i3.2153Keywords:
Data Mining, C4.5 Algorithm, Prediction, Loan Amount, Decision TreeAbstract
The development of information technology now allows storing data in a very large time. This development has added to various fields, including credit facilities, so that the use of information technology in public institutions. Data mining is an activity that includes gathering the use of historical data to find the regularity of patterns, or relationships in large data. The process of predicting the number of customer loans so far in the savings and loan cooperatives is still based on looking directly at the loan amount of the customers and seeing the general ledger records in the cooperative. The application of the C4.5 algorithm is a case-solving solution that is often used in problem solving on classification techniques that have characteristics namely by the process of determining the entropy value and gain value from the possibility that each criterion is a reference decision followed by the process of the decision tree
References
L. N. Rani, "Klasifikasi Nasabah Menggunakan Algoritma C4.5 Sebagai Dasar Pemberian Kredit," JURNAL INOVTEK POLBENG - SERI INFORMATIKA, vol. VOL. 1, p. 1266, NOVEMBER 2016.
F. F. Harryanto and S. Hansun, "Penerapan Algoritma C4.5 untuk Memprediksi Penerimaan Calon Pegawai Baru di PT WISE," Jatisi, vol. Vol. 3 No. 2 , p. 96, Maret 2017.
M. "IMPLEMENTASI TEKNOLOGI INFORMASI MENGGUNAKAN HUMAN ORGANIZATION TECHNOLOGY (HOT) FIT MODEL DI PERPUSTAKAAN PERGURUAN TINGGI," JIPI (Jurnal Ilmu Perpustakaan dan Informasi), vol. Vol. 2, p. 226, Tahun 2017.
H. Widayu, S. D. Nasution, N. Silalahi and M. , "DATA MINING UNTUK MEMPREDIKSI JENIS TRANSAKSI NASABAH PADA KOPERASI SIMPAN PINJAM DENGAN ALGORITMA C4.5," MEDIA INFORMATIKA BUDIDARMA, vol. Vo 1, pp. Hal 32-37, Juni 2017.
E. Prasetyo, DATA MINING - Konsep dan Aplikasi Menggunakan MATLAB, Yogyakarta, 2012.
K. and E. T. Luthfi, Algoritma Data Mining, Yogyakarta: C.V ANDI OFFSET (Penerbit ANDI), 2009.
E. Buulolo, "IMPLEMENTASI ALGORITMA APRIORI PADA SISTEM PERSEDIAAN OBAT (STUDI KASUS : APOTIK RUMAH SAKIT ESTOMIHI MEDAN)," Pelita Informatika Budi Darma, vol. Volume : IV, p. 72, Agustus 2013.
R. K. Amin, D. I. M.Si, and Y. S. M,T, "IMPLEMENTASI KLASIFIKASI DECISION TREE DENGAN ALGORITMA C4.5 DALAM PENGAMBILAN KEPUTUSAN PERMOHONAN KREDIT OLEH DEBITUR (STUDI KASUS: BANK PASAR DAERAH ISTIMEWA YOGYAKARTA)," e-Proceeding of Engineering | Fakultas Informatika, Vols. Vol.2,, p. Page 1768, April 2015 .
H. Widayu, S. D. Nasution, N. Silalahi and M. , "DATA MINING UNTUK MEMPREDIKSI JENIS TRANSAKSI NASABAH PADA KOPERASI SIMPAN PINJAM DENGAN ALGORITMA C4.5," MEDIA INFORMATIKA BUDIDARMA, Juni 2017, vol. Vol 1, pp. Hal 32-37, Juni 2017.
D. H. Kamagi and S. Hansun, "Implementasi Data Mining dengan Algoritma C4.5 untuk Memprediksi Tingkat Kelulusan Mahasiswa," ULTIMATICS, , Vols. Vol. VI,, pp. 16-17, Juni 2014.
F. F. Harryanto and S. Hansun, "Penerapan Algoritma C4.5 untuk Memprediksi Penerimaan Calon Pegawai Baru di PT WISE," Jatisi, vol. 3, pp. 97-99, 2017.
S. Edhy , Pengantar Teknologi Informasi., Graha Ilmu, 2005.
S. Haryati, A. Sudarsono and E. Suryana, "IMPLEMENTASI DATA MINING UNTUK MEMPREDIKSI MASA STUDI MAHASISWA MENGGUNAKAN ALGORITMA C4.5 (STUDI KASUS: UNIVERSITAS DEHASEN BENGKULU)," Jurnal Media Infotama, vol. Vol. 11, pp. 133-134, September 2015.
S. Priyandae, Mudahnya Belaar Microsoft Excel 2013 Untuk Pemula, Yogyakarta, 2014.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).

