Pengelompokan Data Kriminal Pada Poldasu Menentukan Pola Daerah Rawan Tindak Kriminal Menggunakan Data Mining Algoritma K-Means Clustering

 (*)Lilis Suriani Mail (STMIK Budi Darma, Medan, Indonesia)

(*) Corresponding Author

Submitted: January 14, 2020; Published: January 25, 2020

Abstract

Crime is all forms of actions and actions that are economically and psychologically harmful that violate the applicable laws in the Indonesian state and social and religious norms. Can be interpreted that, crime is anything that violates the law and violates social norms, so that the public opposes it. This study aims to facilitate and assist law enforcement authorities in anticipating criminal acts in vulnerable areas. The method used in this research is the k-means algorithm method using rapidminer 7.3 software. Where the grouping is done to determine the level of vulnerable areas. The establishment of this system is expected to assist the police in determining areas prone to crime. And from the results of the study stated groups of areas prone to criminal acts, namely MEDAN POLRESTA and LABUHAN BATU POLRES.

Keywords


Criminal, Data Mining, K-Means Clustering, Rapidminer

Full Text:

PDF


Article Metrics

Abstract view : 3287 times
PDF - 1999 times

References

R. I. Ndaumanu and M. R. Arief, Kusrini, “Analisis Prediksi Tingkat Pengunduran Diri Mahasiswa dengan Metode K-Nearest Neighbor,” Jatisi, vol. 1, no. 1, pp. 1–15, 2014.

F. Nasari and S. Darma, “Penerapan K-Means Clustering Pada Data Penerimaan Mahasiswa Baru,” Semin. Nas. Teknol. Inf. dan Multimed. 2015, pp. 73–78, 2015.

Sunjana, “Aplikasi Mining Data Mahasiswa dengan Metode Klasifikasi Decision Tree,” Seminar Nasional Aplikasi Tknologi Informasi. pp. 1–6, 2010.

K. Dumai et al., “IMPLEMENTASI ALGORITMA K-MEANS CLUSTERING UNTUK MENENTUKAN ARKETIPE PEMBELIAN SUKU CADANG DAN ASESORIS KOMPUTER ( STUDI KASUS DI TOKO LAKSAMANA Penelitian ini dilakukan untuk mempelajari Data Mining K-Means Clustering dalam pencarian knowledge ( pengetahu,” vol. 9, no. 1, pp. 26–35, 2017.

A. Jananto, “Penggunaan Market Basket Analysis untuk Menentukan Pola Kompetensi Mahasiswa,” vol. 17, no. 2, pp. 82–89, 2012.

T. Kristanto, R. Arief, D. Jurusan, and T. Informatika, “Analisa Data Mining Metode Fuzzy Untuk Customer Relationship Management Pada Perusahaan Tour &,” vol. d, no. 2009, pp. 2–4, 2013.

K. Tampubolon, H. Saragih, B. Reza, K. Epicentrum, A. Asosiasi, and A. Apriori, “Implementasi Data Mining Algoritma Apriori Pada Sistem Persediaan Alat-Alat Kesehatan,” Inf. dan Teknol. Ilm., pp. 93–106, 2013.

D. Dwinavinta, C. Nugraha, M. Fahmi, Z. Naimah, and N. Setiani, “Klasterisasi Judul Buku dengan Menggunakan Metode K-Means,” Semin. Nas. Apl. Teknol. Inf. Yogyakarta, vol. 21, no. 1, pp. 1907–5022, 2014.

A. Dahlan, E. Utami, and E. T. Luthfi, “Perancangan Data Warehouse Perpustakaan Perguruan Tinggi Xyz Menggunakan Metode Snowflake Schema,” VIII NomorJurnal Teknol. Inf., vol. 24, no. November, pp. 1907–2430, 2013.

J. O. Ong, “Implementasi Algotritma K-means clustering untuk menentukan strategi marketing president university,” J. Ilm. Tek. Ind., vol. vol.12, no, no. juni, pp. 10–20, 2013.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Lilis Suriani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Sistem Komputer dan Informatika (JSON)
Dikelola oleh STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : jurnal.json@gmail.com


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.