Implementasi Algoritma Naive Bayes Untuk Menentukan Lokasi Strategis Dalam Membuka Usaha Menengah Ke Bawah di Kota Medan (Studi Kasus: Disperindag Kota Medan)

Authors

  • Samuel Suprianto STMIK Budi Darma, Medan

DOI:

https://doi.org/10.30865/json.v1i2.1939

Keywords:

Strategic Location, Data Mining, Naive Bayes

Abstract

The business can be influenced by the location of the location and the type of business that was built in the specified location and can develop over time but it is not impossible for bankruptcy to occur because the type of business is not in the right location and promising due to factors that do not support at that location, include that area where the population is not too dense and the land is not that large. For this reason, the authors conduct research on strategic locations to open a particular type of business depending on the location found by the Naive Bayes method. Where the method is used to predict accurately from the many locations that have been researched after that it is determined which is more appropriate area.

Author Biography

Samuel Suprianto, STMIK Budi Darma, Medan

Prodi Teknik Informatika

References

Pearce II, John A., dan Robinson, Richard B. 2011. Strategic Management : Formulation, Implementation and Control, Twelfth Edition. New York : Mc Graw Hill

Alfa Saleh. Implementasi Metode Klasifikasi Naive Bayes dalam Memprediksi Besarnya Penggunaan Listrik Rumah Tangga. Citec Journal, 2010, 2 (3), 209.

Kusrini dan Emha Taufiq Luthfi, 2009. Algoritma Data Mining, Andi Offse

Usman, Nurdin. (2002). Konteks Implementasi Berbasis Kurikulum. Jakarta:PT. Raja Grafindo Persada.

Tan, P. Et al.2006. Introduction to data Mining. Boston: Pearson Education.

Ridwan, M., Suyono, H., Sarosa, M., 2013, Penerapan Data Mining untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier, Jurnal EECCIS, Vol 1, No. 7, Hal. 59-64.

Seminar Nasional Teknologi Informasi & Komunikasi Terapan 2012 (Semantik 2012) Semarang 23 Juni 2012

Bramer dan Max, 2007. Principles of Data Mining. Springer Science

Capello, Roberto. 2011. Location, Regional Growth and Local Development Theories. Dipartimento BESTPolitecnico di MilanoPiazza Leonardo da Vinci 3220133. Giugno.

Miles, Mike E. Et al. 1999. Real Estate Development, Principles and Process. Washington DC: Urban Land Institute.

Jogiyanto, H.M, 2005, Analisis dan Desain Sistem Informasi, Andi Offset, Yogyakarta.

Bonnie Soeherman dan Marion Pinontoan. 2008. Designing Information System.Yogyakarta. Elex Media Komputindo.

Krismiaji, 2010. Sistem Informasi Akuntansi. Yogyakarta: UPP AMP YKPN

Rumbaugh, J., Jacobson, I., & Booch, G. 2005. The Unified Modeling Language Reference Manual Second Edition. Canada: Pearson Education.

Rosa.a.s; M. Shalahuddin, 2016. Rekayasa Perangkat Lunak (Terstruktur dan Berorientasi Objek), INFORMATIKA. Bandung, BI-Obses, Hal. 137-238.

Dimov, Rossen, 2007. WEKA : Praktical machine learning tools and techniques with java implementations. AI Tools Seminar.

Bouckaert, Remco R.; Frank, Eibe; dkk. 2008. WEKA Manual for Version 3-6-0. New Zealand: University of Waikato

Hariyanto, Bambang, Sistem Manajemen Basis Data: Pemodelan, Perancangan, dan Terapannya, Informatika, Bandung: 2004.

Jarot S., Shenia A., Sudarma S., Buku Pintar Mocrosoft Office 2007 & 2010 Word-Excel-PowerPoint, Media Kita, 2012

Downloads

Published

2020-01-25

How to Cite

Suprianto, S. (2020). Implementasi Algoritma Naive Bayes Untuk Menentukan Lokasi Strategis Dalam Membuka Usaha Menengah Ke Bawah di Kota Medan (Studi Kasus: Disperindag Kota Medan). Jurnal Sistem Komputer Dan Informatika (JSON), 1(2), 125–130. https://doi.org/10.30865/json.v1i2.1939