Penentuan Tingkat Kerawanan Penyebaran Leptospirosis Menggunakan Inferensi Fuzzy Tsukamoto

 (*)Ariesta Damayanti Mail (STMIK AKAKOM Yogyakarta, Indonesia)

(*) Corresponding Author

Abstract

Cases of leptospirosis in Indonesia mainly occur in areas that often experience floods and areas where the majority of its citizens work as farmers. Special Region of Yogyakarta (DIY) was the province with the most leptospirosis cases in Indonesia in 2011. In 2010-2011 an extraordinary event (KLB) of leptospirosis occurred in Bantul district and in 2014 the number of leptospirosis cases in Bantul district increased by 76 cases.. Based on Kementerian Kesehatan report, data shows that there has been an outbreak of leptospirosis in Bantul , so in addition to epidemiological data necessary case information is also needed to determine the geographic case risk factors and mitigation efforts.In the processing of digital maps for GIS , often found important objects that are not appropriate in its processing can not even be excluded because of uncertainty owned. Applications are made in this study was built and designed by the architectural Tsukamoto fuzzy inference method for handling uncertainty. The results of the application is the visualization of the spread of the disease leptospirosis vulnerability maps based determinants that also involves uncertainty factors that will be resolved with the Tsukamoto fuzzy inference method for use as detection and prevention against the spread of disease leptospirosis in the future

Full Text:

PDF


Article Metrics

Abstract view : 708 times
PDF - 477 times

References

W. Al-orry, M. Arahou, R. Hassikou, A. Quasmaoui, R. Charof, and Z. Mennane, “Leptospirosis: Transmission, Diagnosis and Prevention,” Int. J. Innov. Appl. Stud., vol. 15, no. 3, pp. 457–467, 2016.

Kemenkes RI, Profil Kesehatan Indonesia. 2015.

J. Chin, Manual Pemberantasan Penyakit Menular Edisi 17 Cetakan IV. Infomedika, 2012.

D. K. Bantul, Profil Kesehatan Kabupaten Bantul Tahun 2012. 2017.

M. R. & J. S. Christoph Kinkeldey, Alan M. MacEachren, “Evaluating the effect of visually represented geodata uncertainty on decision-making: systematic review, lessons learned, and recommendations,” Cartogr. Geogr. Inf. Sci., 2017.

S. Kusumadewi, Artificial Intelligence (Teknik dan Aplikasinya). Yogyakarta: Graha Ilmu, 2003.

M. S. Aulina, M. Rahardjo, and Nurjazuli, “Pola Sebaran Kejadian Pneumonia pada Balita di Kecamatan Bergas, Kabupaten Semarang,” J. Kesehat. Masy., vol. 5, no. 5, pp. 744–752, 2017.

I. P. A. S. I Wayan Rustana PutraYasa, I Gusti Lanang Agung RadityaPutra, “Sistem Informasi Geografis Pemetaan Penyakit Kronis dan Demam Berdarah di Puskesmas 1 Baturiti Berbasis Website,” in SNATIKA 2017, 2017.

D. Pengolahan, P. Tematik, D. Rawan, and P. Demam, “Pemanfaatan Sistem Inferensi Fuzzy dalam Pengolahan Peta Tematik ( Studi Kasus : Sistem Informasi Geografis Daerah Rawan Penyakit Demam Berdarah ),” no. July, 2016.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Jurnal Sistem Komputer dan Informatika (JSON)



Jurnal Sistem Komputer dan Informatika (JSON)
Dikelola oleh STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : jurnal.json@gmail.com


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.