ON volume 7, Nomor 2, Desember 2025
e-ISSN 2685-998X
DOI 10.30865/json.v7i2.9389

¢ Jurnat Sigtem Komputer dan Informatiga (JSON) Hal: 719-731

Analisis Pengaruh Hyperparameter terhadap Kinerja MobileNetV2
dan InceptionV3 pada Klasifikasi Retakan Beton

Akfi Rozada, Nurul Baroroh, Muhammad Ivan Khoirur Rizky, Ricardus Anggi Pramunendar”

Fakultas llmu Komputer, Teknik Infomatika, Universitas Dian Nuswantoro, Semarang, Indonesia
Email: 1111202214724@mbhs.dinus.ac.id, 2111202214802@mhs.dinus.ac.id ,>111202214778@mhs.dinus.ac.id,
4" ricardus.anggi@dsn.dinus.ac.id
Email Penulis Korespondensi: ricardus.anggi@dsn.dinus.ac.id”

Submitted: 29/11/2025; Accepted: 12/12/2025; Published: 31/12/2025

Abstrak- Deteksi retakan pada permukaan beton merupakan langkah penting dalam menjaga keandalan dan keselamatan
struktur infrastruktur. Metode inspeksi visual masih memiliki keterbatasan karena dipengaruhi kondisi lingkungan,
subjektivitas operator, serta potensi kesalahan identifikasi. Untuk mengatasi hal tersebut, penelitian ini membandingkan
performa dua arsitektur Convolutional Neural Network (CNN), yaitu MobileNetV2 dan InceptionV3, dalam melakukan
klasifikasi citra retakan beton. Dataset yang digunakan adalah NYA-Crack-DATA yang terdiri dari dua kelas, yaitu crack dan
no-crack, dengan total 5.026 citra. Seluruh citra diproses melalui tahapan pra-pemrosesan dan augmentasi untuk menghasilkan
data yang seragam, lebih variatif, serta mendukung proses pelatihan yang stabil pada kedua model modern tersebut.Penelitian
ini berfokus pada analisis pengaruh hyperparameter terhadap performa kedua arsitektur CNN tersebut. Empat hyperparameter
utama diuji secara bertahap, meliputi learning rate, dropout, batch size, dan epoch. Evaluasi setiap konfigurasi dilakukan
menggunakan Stratified 5-Fold Cross-Validation agar hasil yang diperoleh lebih stabil, konsisten, dan tidak bias. MobileNetV2
menunjukkan performa terbaik pada kombinasi learning rate 0.0005, dropout 0.2, batch size 128, dan 30 epoch, dengan akurasi
0.981, presisi 0.979, recall 0.988, dan F1-score 0.984. Sementara itu, InceptionVV3 mencapai akurasi tertinggi sebesar 0.966
pada konfigurasi learning rate 0.0003, dropout 0.8, batch size 128, dan 40 epoch.Hasil penelitian menunjukkan bahwa
MobileNetV2 lebih unggul dalam akurasi, stabilitas, serta efisiensi komputasi dibandingkan InceptionV3, sehingga lebih sesuai
untuk implementasi nyata pada perangkat dengan keterbatasan sumber daya komputasi modern.

Keywords: CNN; Hyperparameter; InceptionV3; Klasifikasi Retakan; MobileNetV2.

Abstract- Crack detection on concrete surfaces is an essential step in maintaining the reliability and safety of infrastructure
structures. Manual visual inspection methods still have limitations due to environmental conditions, operator subjectivity, and
potential identification errors. To address these issues, this study compares the performance of two Convolutional Neural
Network (CNN) architectures, namely MobileNetV2 and InceptionV3, for classifying concrete crack images. The dataset used
is NYA-Crack-DATA, consisting of two classes crack and no crack with a total of 5,026 images. All images were processed
through pre-processing and augmentation steps to produce consistent, more diverse data and support stable training on both
modern models. This study focuses on analyzing the influence of hyperparameters on the performance of both CNN
architectures. Four key hyperparameters were examined gradually, including learning rate, dropout, batch size, and epoch. Each
configuration was evaluated using Stratified 5-Fold Cross-Validation to ensure results that are more stable, consistent, and
unbiased. MobileNetV2 achieved the best performance with a learning rate of 0.0005, dropout of 0.2, batch size of 128, and 30
epochs, resulting in an accuracy of 0.981, precision of 0.979, recall of 0.988, and F1-score of 0.984. Meanwhile, InceptionV3
reached its highest accuracy of 0.966 with a learning rate of 0.0003, dropout of 0.8, batch size of 128, and 40 epochs. The
findings indicate that MobileNetV2 outperforms InceptionV3 in terms of accuracy, stability, and computational efficiency,
making it more suitable for real implementation on devices with limited computational resources.

Keywords: Crack Classification; CNN; Hyperparameters; InceptionV3; MaobileNetV2.

1. PENDAHULUAN

Pembangunan infrastruktur memiliki peran penting dalam mendukung pertumbuhan ekonomi dan
meningkatkan kesejahteraan masyarakat[1]. Infrastruktur memadai mampu mempercepat mobilitas, distribusi
barang dan jasa, serta berbagai aktivitas ekonomi[2]. Dalam proses pembangunannya, kebutuhan terhadap material
konstruksi yang kuat, tahan lama, dan efisien menjadi aspek yang sangat penting. Beton menjadi salah satu material
yang paling banyak digunakan karena memiliki kekuatan tekan tinggi, mudah dibentuk, dan relatif tahan terhadap
perubahan cuaca[3]. Hampir seluruh proyek besar seperti jembatan, jalan raya, gedung bertingkat, dan bendungan
menggunakan beton sebagai bahan utama. Namun dibalik keunggulannya, beton juga memiliki kelemahan berupa
ketahanan tarik yang rendah sehingga mudah mengalami keretakan, yang berpotensi menurunkan kualitas,
keamanan, dan umur pakai struktur[4].Di Indonesia, permasalahan keretakan pada infrastruktur seperti jalan dan
jembatan masih sering dijumpai[5]. Proses keretakan pada struktur beton dipercepat oleh iklim tropis yang penuh
dengan kelembapan, perubahan suhu, dan beban lalu lintas yang signifikan[6]. Menurut data terbaru pada Statistik
Infrastruktur PUPR Tahun 2023, tingkat kemantapan jalan nasional meningkat dari 92,20% pada tahun 2022
menjadi 94,18% pada tahun 2023. Jalan provinsi juga mengalami kenaikan dari 70% menjadi 71,33%, sedangkan
jalan kabupaten/kota naik dari 56% menjadi 57,90%, sebagaimana tercantum pada situs resmi PUPR [7]-[8].
Meskipun demikian, kesenjangan kualitas antara jalan nasional dan jalan daerah masih terlihat jelas, terutama pada
infrastruktur daerah yang membutuhkan perhatian lebih karena lebih rentan terhadap kerusakan struktural seperti
retakan pada lapisan beton. Berdasarkan permasalahan tersebut, dibutuhkan sistem yang mampu memantau
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kondisi beton secara cepat dan akurat agar kerusakan dapat terdeteksi lebih dini[9]. Metode manual seperti inspeksi
visual atau pengujian Nondestruktif (NDT) masih banyak digunakan, namun cara ini memakan waktu, bergantung
pada keahlian petugas, dan berisiko menimbulkan kesalahan yang dapat membahayakan struktur[10]. Teknologi
kecerdasan buatan (Artificial Intelligence/Al) menawarkan solusi yang lebih objektif, efisien, dan terukur, karena
mampu menganalisis citra permukaan beton secara otomatis dan konsisten[11]. Dalam hal ini, Convolutional
Neural Network (CNN) menjadi salah satu pendekatan paling efektif dalam mendeteksi pola, tekstur, dan bentuk
retakan pada permukaan beton dengan tingkat akurasi yang tinggi[11].

Berbagai penelitian sebelumnya telah berkontribusi menyelesaikan permasalahan keretakan beton dengan
mengembangkan metode deteksi retak beton berbasis deep learning, khususnya dengan arsitektur Convolutional
Neural Network (CNN). Arafin et al. menguji beberapa model CNN seperti VGG19, ResNet50, dan InceptionV3
pada dataset retak dan spalling beton dengan variasi optimizer dan learning rate, di mana InceptionVV3 mencapai
akurasi terbaik 91,98% untuk segmentasi spalling, sedangkan EfficientNetB3—U-Net unggul pada segmentasi
retakan dengan F1-score 95,66%][12]. Zadeh et al. membandingkan model transfer learning (VGG19, ResNet50,
InceptionV3, EfficientNetV2) untuk klasifikasi retak permukaan beton, dengan EfficientNetV2 memperoleh hasil
tertinggi 99,6%[13]. Penelitian lain oleh Lugman Ali et al. (2021) dalam jurnal Sensors mengevaluasi performa
VGG16, VGG19, ResNet50, dan InceptionV3 pada delapan dataset berbeda dengan pengaturan hyperparameter
seperti learning rate, dropout, dan epoch 20, dan menemukan bahwa ukuran dan variasi data lebih memengaruhi
akurasi dibanding kompleksitas model, dengan InceptionV3 unggul pada dataset menengah[14]. Sementara itu,
Nguyen et al. (2024) mengoptimasi CNN untuk deteksi retak beton pada Jetson Nano, menguji ResNet50,
MobileNetV2, DenseNet121, dan EfficientNetBO dengan variasi batch size, learning rate, dan epoch,
menghasilkan MobileNetVV2 dengan akurasi 97,5% serta waktu inferensi tercepat dan konsumsi daya paling
efisien[15]. Penelitian serupa yang menggunakan GLCM yang dikombinasikan dengan klasifikasi jaringan neural
sederhana dari [16] menunjukkan hasil yang cukup baik dengan akurasi puncak sebesar 95% pada data berjumlah
sedikit. Hasil-hasil tersebut membuktikan bahwa teknologi deep learning sangat efektif dalam mendeteksi
retakan pada beton[12]-[15]. Meskipun demikian, sebagian besar studi masih berfokus pada pengembangan
arsitektur model dan perbandingan performa antar jaringan Convolutional Neural Network (CNN). Kajian
mengenai pengaruh pengaturan parameter pelatihan terhadap hasil klasifikasi masih terbatas, padahal parameter
seperti learning rate, dropout, batch size, dan jumlah epoch memiliki peran penting dalam mengoptimalkan proses
pembelajaran model serta mencegah overfitting[17].Berdasarkan celah tersebut, penelitian ini berfokus pada
optimasi kombinasi hyperparameter pada dua model CNN, yaitu InceptionV3 dan MobileNetV2, untuk klasifikasi
biner citra retakan beton. InceptionV3 dipilih karena mampu mengekstraksi fitur visual secara kompleks dan
memiliki kemampuan generalisasi yang baik[18], sementara MobileNetV2 dipilih karena ringan dan efisien
sehingga cocok untuk implementasi di perangkat dengan sumber daya terbatas[19]. Proses pelatihan model
dilakukan dengan metode k-fold cross-validation agar hasil yang diperoleh lebih stabil dan akurat, serta dapat
mengurangi risiko overfitting[20].

Kontribusi utama penelitian ini terletak pada belum adanya studi yang secara komparatif menguji proses
tuning hyperparameter pada dua model CNN tersebut menggunakan dataset NY A-Crack-DAT A secara sistematis.
Penelitian sebelumnya juga belum membandingkan perilaku learning rate, dropout rate, batch size, dan jumlah
epoch pada InceptionV3 dan MobileNetV2 dalam konteks dataset yang sama, sehingga belum tersedia kajian yang
menjelaskan bagaimana konfigurasi pelatihan dapat memengaruhi performa model. Penelitian ini kemudian
menawarkan sudut pandang baru dengan menyediakan pendekatan yang lebih terarah dan berbasis bukti untuk
mengoptimalkan Klasifikasi retakan beton berbasis deep learning. Secara akademik, penelitian ini menyusun
proses tuning hyperparameter secara terstruktur untuk memperoleh konfigurasi optimal pada kedua model,
sekaligus memberikan bukti empiris mengenai pengaruh variasi hyperparameter terhadap performa klasifikasi
retakan beton. Secara praktis, penelitian ini menghasilkan model yang lebih akurat, stabil, dan siap diterapkan
untuk mendukung pemantauan kondisi infrastruktur secara lebih cepat dan tepat. Berdasarkan tujuan tersebut,
penelitian ini merumuskan tiga pertanyaan utama: pengaruh variasi hyperparameter terhadap performa model,
perbandingan kemampuan InceptionV3 dan MobileNetV2 pada dataset NYA-Crack-DATA, serta identifikasi
kombinasi hyperparameter yang paling optimal dan stabil untuk klasifikasi citra retakan beton. Rumusan masalah
tersebut menjadi landasan dalam merancang eksperimen dan analisis, sehingga hasil penelitian dapat memberikan
kontribusi metodologis maupun praktis dalam pengembangan sistem deteksi kerusakan beton berbasis citra.

2. METODOLOGI PENELITIAN

2.1 Tahapan Penelitian

Tahapan penelitian ini divisualisasikan pada Gambar 1 sebagai representasi runtutan proses yang
dilakukan mulai dari akuisisi dataset hingga evaluasi performa model. Proses dimulai dari pengumpulan dataset
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serta penyusunan struktur folder kelas. Selanjutnya dilakukan pra-pemrosesan melalui resize, normalisasi, dan
augmentasi data untuk memastikan kualitas input yang seragam. Pada tahap perancangan model, dilakukan
pemilihan arsitektur InceptionV3 dan MobileNetV2 yang telah dipretrain pada ImageNet. Tahap berikutnya adalah
penentuan hyperparameter yang meliputi learning rate, dropout, batch size, dan jumlah epoch, serta penggunaan
loss function BCEWithLogits dan optimizer Adam. Evaluasi model dilakukan menggunakan k-fold cross-
validation untuk memperoleh nilai akurasi, presisi, recall, dan F1-score secara lebih stabil.

Evaluasi Model dengan

Adqricic Pra-pemrosesan & Augmentasi Perancangan Arsiteltur Penentuan Hyperparamater St
Al Dataset = g 3 .
u;:::_kmiase a. Resize a. InceptionV3 a. LE. Dropout, Batch, Epoch ._\fmss.'\rahdauon
folder kelas b Nomnalisasi b, MobileNetV2 =®| b. Loss: BCEWithLogits i ;' i‘ru{a'ﬂ
(Crack & No c.  Augmentasi Data c. Optimizer: Adam : 25151

c. Recall & Fl-Score

Crack)

Gambar 1.Alur Kerja Penelitian

2.2 Akuisisi Dataset

Dataset yang digunakan dalam penelitian ini adalah NYA-Crack-DATA, yaitu dataset publik dari
Mendeley Data [21]. Dataset ini berisi citra permukaan beton yang terbagi menjadi dua kelas utama, yaitu Crack
(retak) dan No Crack (tidak retak), dengan total 5026 citra yang terdiri atas 2167 citra Crack dan 2859 citra No
Crack. Contoh visual dari kedua kelas ditampilkan pada Tabel 1 sebagai gambaran karakteristik dataset yang
digunakan. Pemilihan NYA-Crack-DATA dilakukan karena ketersediaannya sebagai dataset publik dengan
jumlah citra yang memadai serta keberagaman visual yang meliputi variasi tekstur permukaan, kondisi
pencahayaan, ukuran retakan, dan tingkat kehalusan beton. Kualitas citra yang baik dan anotasi kelas yang jelas
menjadikan dataset ini representatif untuk tugas deteksi retakan beton. Variasi kondisi visual ini juga memberikan
dasar yang kuat bagi model untuk mempelajari pola retakan secara lebih komprehensif dan meningkatkan potensi
generalisasi pada berbagai lingkungan nyata.

Tabel 1.Distribusi Dataset Berdasarkan Kelas Crack dan No Crack

Label Jumlah Data Data ke-1 Data ke-2 Data ke-3 Data ke-4
Crack 2167 f
|

{
! ’

o b . . ' .

2.3 Pra-pemrosesan dan Augmentasi Data

Pra-pemrosesan dilakukan untuk memastikan seluruh citra memiliki karakteristik input yang seragam,
baik dari segi ukuran, intensitas piksel, maupun distribusi kanal warna. Standarisasi ini diperlukan karena model
CNN sangat sensitif terhadap variasi yang tidak relevan dan membutuhkan input yang konsisten agar proses
ekstraksi fitur berlangsung stabil[21]. Tahap pertama adalah resize, yaitu mengubah dimensi citra ke ukuran tetap
sesuai arsitektur yang digunakan. MobileNetV2 memerlukan citra berukuran 224x224 piksel[19], sedangkan
InceptionV3 membutuhkan 299x299 piksel . Setelah itu, citra dikonversi ke format tensor dengan menskalakan
nilai piksel dari rentang 0-255 menjadi 0—1 untuk meningkatkan stabilitas numerik selama proses komputasi [9].
Tahap selanjutnya adalah normalisasi RGB menggunakan nilai mean dan standard deviation yang digunakan pada
dataset ImageNet, sehingga distribusi piksel berada pada rentang yang sesuai dengan karakteristik data pra-latih
model dan dapat mempercepat proses konvergensi[9].Langkah pra-pemrosesan kemudian dilanjutkan dengan
augmentasi data, yang diterapkan pada data pelatihan untuk meningkatkan keragaman sampel secara artifisial
sehingga model memperoleh variasi yang lebih luas dan tidak mudah mengalami overfitting[23]. Augmentasi yang
digunakan meliputi rotation acak hingga £20° untuk memberikan variasi orientasi citra melalui matriks rotasi dua
dimensi [24]. Selain itu, digunakan pula transformasi affine yang mencakup translation, shear, dan scaling, yang
masing-masing menggeser posisi citra, memberikan efek kemiringan, serta mengubah skala objek melalui
penerapan matriks transformasi linear[24]. Variasi kondisi pencahayaan diperkenalkan melalui brightness jitter,
yaitu penyesuaian intensitas piksel berbasis faktor acak [24]. Untuk menambah keragaman orientasi, digunakan
pula horizontal flip dan vertical flip yang membalik citra pada sumbu horizontal maupun vertikal tanpa mengubah
struktur objek [25].
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2.4 Perancangan Arsitektur Model

2.4.1 Arsitektur InceptionV3

InceptionV3 merupakan arsitektur CNN lanjutan yang dirancang untuk meningkatkan efisiensi dan
kedalaman representasi melalui penggunaan factorized convolutions, reduksi dimensi yang agresif, serta
pemrosesan multi-jalur paralel[26]. Pendekatan ini memungkinkan model menangkap informasi visual pada
berbagai skala secara simultan, sehingga efektif untuk mendeteksi variasi bentuk dan orientasi pada pola retakan
beton[13]. Secara matematis, salah satu jalur konvolusi 3x3 dalam modul Inception dapat dinyatakan sebagai

1 1 ¢
Yauzs(u, v, k) = Z Z ZX(U +iL,v+j,¢) Wijcxr + by 1)

i=—1j=-1c=1

Pada persamaan (1), menghitung keluaran konvolusi 3x3, di mana Y33 (u, v, k) adalah nilai output pada posisi
(u, v) untuk kanal ke-k. Variabel X (u + i, v + j, ¢) merepresentasikan nilai masukan yang digeser oleh indeks i
dan j pada kanal ke-c. Bobot kernel ditunjukkan oleh w(; ; . ), sedangkan C adalah jumlah kanal masukan. Nilai
b, merupakan bias untuk kanal keluaran ke-k. Persamaan ini menggambarkan proses penjumlahan hasil perkalian
antara nilai masukan dan bobot dalam jendela konvolusi 3x3[27].Seluruh jalur yang bekerja secara paralel
kemudian digabungkan melalui operasi konkatenasi kanal:

Ylnception(u' v,:) = Concat(lel, Y3x3, Y5xs, Ypool_proj)' 2

Persamaan (2) merepresentasikan keluaran blok Inception pada posisi spasial (u,v). Pada persamaan ini,
Yinception (1, v, :) adalah vektor fitur hasil penggabungan seluruh cabang konvolusi pada koordinat tersebut.
Variabel Y;yq, Y3x3, Ysxsmasing-masing merupakan keluaran dari operasi konvolusi dengan kernel berukuran
1x1, 3x3, dan 5x5. Sementara itu, Y;o,1_pro; adalah fitur yang dihasilkan dari cabang pooling yang diikuti oleh
proyeksi konvolusi 1x1. Operasi Concat(-)menunjukkan bahwa seluruh keluaran dari empat cabang tersebut
digabungkan pada dimensi kanal untuk membentuk representasi fitur akhir pada blok Inception.[27].

Grid Size Reduction

2X Inception Module C

@@b‘

5¥ InceptionModule A 4X Inception Module B

. Output 8832048 :
B Convolution Tnput 2992993 tp Final part
B Avspool $x8x2048>1001
MaxPool — Anmiliary Classifier
B Concat
I Dropout
Full Connected
B Softmax

Gambar 2. Diagram Arsitektur InceptionV3

Struktur umum model pada penelitian ini ditunjukkan pada Gambar 2, yang menggambarkan alur makro
InceptionV3 mencakup lima modul Inception A, grid size reduction pertama, empat modul Inception B, grid size
reduction kedua, dua modul Inception C, serta sebuah auxiliary classifier[26]. Diagram tersebut bersifat ilustratif
dan tidak menampilkan stem network serta detail internal seperti factorized convolution (1x7, 7x1), meskipun
seluruh komponen tersebut tetap aktif dalam implementasi model pretrained PyTorch yang digunakan.Dalam
penelitian ini, InceptionV3 diinisialisasi menggunakan bobot ImageNet dan dimodifikasi pada bagian classifier
akhir menjadi Dropout — Linear (2048— 1) agar menghasilkan satu logit sesuai kebutuhan klasifikasi biner[22].
Auxiliary classifier (AuxLogits) juga disesuaikan menjadi keluaran tunggal. Walaupun diagram arsitektur
menampilkan softmax, implementasi ini menggunakan BCEWithLogitsLoss yang lebih stabil untuk tugas biner,
sehingga softmax tidak digunakan secara eksplisit. Modifikasi ini memungkinkan model mempertahankan
kemampuan representasi fitur mendalam sembari menyesuaikannya dengan karakteristik tekstur retakan beton.
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2.4.2 Arsitektur MobileNetV2

MobileNetV2 dirancang sebagai arsitektur CNN yang sangat efisien melalui pemanfaatan depthwise
separable convolution dan inverted residual block. Depthwise separable convolution memecah konvolusi standar
menjadi dua tahap, yaitu depthwise convolution untuk memproses setiap kanal secara terpisah dan pointwise
convolution (1x1) untuk menggabungkan kembali hasilnya[28]. Pemisahan ini menurunkan biaya komputasi
secara signifikan dibandingkan konvolusi standar dengan kompleksitas

Costgq = HW K2 G, Cous (3)

Pada persamaan (3), H dan W merepresentasikan tinggi dan lebar feature map, sedangkan K menunjukkan ukuran
kernel konvolusi yang digunakan. Nilai Cj,merupakan jumlah kanal masukan, dan C,,+ merupakan jumlah kanal
keluaran yang dihasilkan oleh lapisan konvolusi. Susunan variabel ini menggambarkan total beban komputasi yang
harus dihitung untuk setiap lokasi piksel pada satu lapisan konvolusi.[28], biaya ini berkurang menjadi

COStsep =H. W(chin + CinCout) (4)

Pada Persamaan, variabel H dan W menyatakan tinggi dan lebar feature map, sedangkan K adalah ukuran kernel
konvolusi. Nilai C;,, merepresentasikan jumlah kanal masukan, dan C,,; menunjukkan jumlah kanal keluaran.
Rumus ini menunjukkan bahwa beban komputasi terdiri dari konvolusi per kanal sebesar K2C;, dan konvolusi 1x1
sebesar C;,,Coyuc-[28]-

224x224x3 e e, Avg Feature Map

............. 7x7x1280

Gambar 3. Diagram Arsitektur MobileNetV2

BatchNorm
Relu6
1x1 Conv
Linerr
Add

1x1 Conv
BatchNorm

Relu6
3x3 DW Conv

Struktur makro MobileNetV2 yang digunakan dalam penelitian ini ditunjukkan pada Gambar 3, yang
terdiri atas lapisan konvolusi awal, diikuti beberapa inverted residual block, dan diakhiri dengan ekstraksi fitur
melalui global average pooling sehingga menghasilkan feature map berukuran 7x7x1280[19]. Diagram tersebut
menampilkan alur blok secara konseptual, sedangkan implementasi pada penelitian ini mengikuti konfigurasi
bawaan PyTorch, termasuk tahap ekspansi kanal, depthwise convolution, dan residual connection ketika dimensi
fitur sesuai[19].Dalam penelitian ini, MobileNetV2 dimuat menggunakan bobot pretrained ImageNet. Lapisan
classifier asli dihapus dan diganti dengan Dropout — Linear (in_features — 1) sehingga menghasilkan satu nilai
logit untuk klasifikasi biner crack dan no-crack. Sesuai kode eksperimen, sebagian parameter awal dibekukan dan
hanya beberapa lapisan akhir yang di-unfreeze untuk fine-tuning, sehingga model tetap mempertahankan fitur
pretrained sambil beradaptasi terhadap karakteristik tekstur retakan beton[29].

2.5 Desain Eksperimen untuk Penentuan Hyperparamater

Proses tuning hyperparameter dilakukan secara sistematis menggunakan pendekatan grid search bertahap
pada arsitektur MobileNetV2 dan InceptionV3. Setiap konfigurasi dievaluasi menggunakan nilai akurasi yang
dihasilkan dari proses pengujian model, sesuai dengan implementasi pada kode eksperimen. Variasi
hyperparameter yang diujikan ditampilkan pada Tabel 2.

Tabel 2. Konfigurasi Hyperparameter pada Eksperimen.

Parameter MobilenetV2 InceptionV3
Learning rate 0.0001-0.001 0.0001-0.001
Drop Out 0.1-1 0.1-1
Batch Size 4,8,16,32,48,64,128 4,8,16,32,48,64,128
Epoch 10,20,30,40,50 10,20,30,40,50
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Hyperparameter yang diuji mencakup aspek optimisasi, regularisasi, jadwal pelatihan, dan konfigurasi
fine-tuning. Seluruh eksperimen dijalankan pada laptop dengan AMD Ryzen 5 6000 series, GPU RTX 3050,
menggunakan library NumPy, Pandas, PyTorch CUDA beserta torchvision, scikit-learn, PIL, Matplotlib, serta
OpenPyXL pada lingkungan Python 3.11 melalui VSCode 1.97. Pada tahap fine-tuning, backbone awal dibekukan
lalu beberapa layer dibuka sesuai fine tune params, sehingga kedalaman fine-tuning menjadi hyperparameter
penting [19]. Optimizer Adam diperlakukan sebagai hyperparameter karena memanfaatkan momen pertama dan
kedua untuk konvergensi yang stabil [26]. Tuning dilakukan secara progresif, dimulai dari pemilihan learning rate
0.0001-0.001, kemudian pengujian dropout rate 0.1-1.0 [24], diikuti variasi batch size 4-128, dan akhirnya jumlah
epoch 10-50 dengan pemilihan bobot terbaik berdasarkan validation loss. Parameter pos weight pada
BCEWithLogits juga diuji untuk menangani ketidakseimbangan kelas [29], sementara steps per epoch digunakan
untuk menjaga konsistensi iterasi antar konfigurasi. Seluruh kombinasi dievaluasi menggunakan cross validation,
dan konfigurasi terbaik dipilih berdasarkan rata-rata akurasi tertinggi dari lima fold tanpa variasi performa ekstrem
[24]. Pendekatan bertahap ini memastikan proses optimasi lebih efisien dan terarah.

2.6 Evaluasi Model dengan Cross Validation

Penelitian ini menggunakan Stratified 5-Fold Cross-Validation untuk memastikan evaluasi yang stabil,
dengan pembagian data ke dalam lima fold yang mempertahankan proporsi kelas Crack dan No Crack[24].
Stratifikasi dilakukan sebelum pra-pemrosesan, sehingga setiap fold memiliki distribusi kelas serupa dengan
dataset asli. Setiap fold bergantian menjadi data validasi, sementara empat fold lainnya menjalani training lengkap
termasuk resize, normalisasi, dan augmentasi, sehingga evaluasi dilakukan secara independen dan konsisten.
Pendekatan ini mengurangi bias akibat ketidakseimbangan kelas dan memberikan gambaran performa model yang
lebih dapat digeneralisasikan. Kinerja model dievaluasi melalui confusion matrix yang mencakup empat kategori
prediksi yaitu TP (True Crack), TN (True No-Crack), FP (False Crack), dan FN (False No-Crack), dengan FN
sebagai kesalahan paling kritis karena berisiko menyebabkan retakan tidak terdeteksi. Berdasarkan nilai TP, TN,
FP, dan FN tersebut, metrik evaluasi kemudian dihitung menggunakan rumus berikut.

TP +TN (5)

TP+TN+FP+FN

[Accuracy = [

[Precision = [L] ©)
" TP+ FP
TP @)
[Recall = [m]
Precision X Recall (8)

[F1-Score = 2 X | —
Precision + Recall
Persamaan (5) digunakan untuk mengukur ketepatan keseluruhan model, persamaan (6) menunjukkan

ketepatan model dalam memprediksi kelas crack, persamaan (7) menunjukkan kemampuan model menemukan
seluruh citra retakan, dan persamaan (8) memberikan penilaian seimbang antara precision dan recall. Rata-rata
nilai dari lima fold digunakan sebagai hasil akhir, dan durasi pelatihan setiap konfigurasi turut dicatat untuk menilai
efisiensi komputasi. Seluruh hasil disimpan otomatis dalam file Excel untuk memudahkan analisis performa secara
konsisten pada setiap konfigurasi.

3. HASIL DAN PEMBAHASAN

3.1 Analisis Karakteristik Dataset

Analisis terhadap dataset NYA-Crack-DATA menunjukkan bahwa variasi visual pada citra memiliki
pengaruh signifikan terhadap performa model. Dataset ini terdiri dari 2167 citra Crack dan 2859 citra No Crack,
di mana perbedaan jumlah tersebut berpotensi menimbulkan bias prediksi sehingga diperlukan strategi seperti
augmentasi dan validasi yang seimbang. Variasi tekstur permukaan beton serta perbedaan pencahayaan menuntut
model untuk mengenali pola retakan meskipun citra dipengaruhi faktor eksternal. Beberapa citra dengan latar
belakang kompleks atau tekstur mirip retakan pada kelas No Crack juga memperlihatkan tantangan bagi model
dalam melakukan generalisasi. Secara keseluruhan, model mampu mengenali pola retakan pada sebagian besar
kondisi visual, tetapi performanya menurun pada citra dengan noise tinggi atau kontras rendah. Kondisi ini
menunjukkan bahwa meskipun dataset cukup representatif, aspek seperti kompleksitas tekstur dan variasi kualitas
citra tetap menjadi tantangan yang perlu diperhatikan selama pelatihan.

3.2 Analisis Hasil Pra-pemrosesan dan Augmentasi Data
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Hasil pra-pemrosesan pada Tabel 3 menunjukkan bahwa proses resize berhasil menghasilkan citra dengan
ukuran seragam tanpa menyebabkan distorsi pada struktur retakan, sehingga proporsi objek tetap konsisten saat
masuk ke model. Citra yang telah dinormalisasi juga memperlihatkan distribusi intensitas piksel yang lebih stabil
dan merata dibandingkan citra asli yang memiliki variasi pencahayaan tidak seragam. Pada tahap augmentasi,
rotasi dan affine transform memberikan variasi sudut dan posisi secara halus tanpa mengubah pola retakan utama,
sementara color shift menambah variasi pencahayaan yang tetap realistis. Pembalikan horizontal dan vertikal juga
menambah keragaman orientasi citra tanpa mengubah konteks tekstur beton. Secara keseluruhan, tahapan pra-
pemrosesan berhasil menstandarkan citra dengan baik, sedangkan augmentasi memperkaya variasi dataset tanpa
menghilangkan informasi penting, sehingga memberikan dasar yang lebih kuat bagi model dalam mempelajari
pola retakan pada berbagai kondisi.

Tabel 3. Gambar Hasil Pra-pemrosesan dan Augmentasi

Original Image Resize 224x224 Resize 299x299 Rotation 20° Affine Transf : Horizontal Fli Vertical Fli
(MobileNetv2) (InceptionV3) ine Transform Color Shift orizontal Flip ertical Flip

3.3 Hasil Eksperimen Hyperparamater

3.3.1 Learning rate

Pengujian learning rate dari 0.0001 hingga 0.001 pada dua arsitektur, yaitu MobileNetV2 dan
InceptionV3, dilakukan untuk mengidentifikasi konfigurasi paling stabil dan akurat. Seluruh hyperparameter lain
dipertahankan pada nilai default agar pengaruh learning rate dapat diamati secara spesifik. Performa masing-
masing konfigurasi ditampilkan pada Gambar 4, yang memperlihatkan bagaimana perubahan kecil pada learning
rate berdampak langsung pada pola konvergensi dan stabilitas pembelajaran.Pada MobileNetV2, learning rate
0.0003 memberikan performa tertinggi dengan akurasi 0.956, precision 0.945, recall 0.979, dan F1-score 0.962.
Nilai ini menunjukkan keseimbangan optimal antara kecepatan pembaruan bobot dan stabilitas gradien. Ketika
learning rate diturunkan ke 0.0001, peningkatan akurasi berjalan lambat karena pembaruan bobot terlalu kecil.
Sebaliknya, penggunaan learning rate lebih besar dari 0.0003 menyebabkan performa menurun akibat gradien
yang berosilasi dan sulit menemukan titik minimum loss. Waktu pelatihan yang jauh lebih singkat, yaitu rata-rata
4,5 menit, memperlihatkan bahwa arsitektur ini sangat efisien untuk tugas deteksi retakan.InceptionV3
menunjukkan kecenderungan berbeda. Model ini mencapai hasil terbaik pada learning rate 0.0005 dengan akurasi
0.937, precision 0.945, recall 0.944, dan F1-score 0.944. Karena arsitektur InceptionV3 lebih dalam, nilai learning
rate kecil seperti 0.0001-0.0002 menghasilkan proses belajar yang lambat, sedangkan learning rate di atas 0.0005
memicu fluktuasi akurasi dan ketidakstabilan akibat pembaruan bobot yang terlalu agresif. Waktu pelatihan rata-
rata 10-11 menit per konfigurasi mencerminkan kompleksitas arsitektur yang tinggi.

Perbandingan Akurasi Model MobileNetV2 dan
InceptionV3 terhadap Variasi Learning Rate
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Gambar 4. Grafik Perbandingan Akurasi MobileNetV2 dan InceptionV3 terhadap Learning Rate.

Analisis ANOVA (Analysis of Variance) terhadap akurasi menunjukkan bahwa perbedaan rerata antara
kedua model tidak terlalu besar, meskipun MobileNetVV2 cenderung menghasilkan akurasi lebih tinggi pada
sebagian besar nilai learning rate. Nilai F memang tinggi, tetapi pola data tidak memperlihatkan perbedaan yang
mencolok, sehingga variasi akurasi pada rentang 0.0001-0.001 relatif serupa tanpa dominasi ekstrem dari salah
satu arsitektur. Berbeda dengan akurasi, hasil pengujian waktu komputasi menunjukkan kontras yang jauh lebih
jelas. MobileNetVV2 membutuhkan rata-rata 4.5 menit per konfigurasi, sedangkan Inception\V3 memerlukan lebih
dari 11 menit, menghasilkan nilai F yang sangat besar dan menegaskan perbedaan komputasi yang signifikan.
Variansi waktu pada InceptionV3 juga lebih tinggi, menunjukkan kebutuhan sumber daya yang lebih besar dan
proses pelatihan yang kurang stabil dibandingkan MobileNetV2. Secara keseluruhan, kompleksitas arsitektur
memengaruhi sensitivitas terhadap learning rate: MobileNetV2 yang ringan stabil pada learning rate kecil,
sedangkan InceptionVV3 memerlukan nilai lebih besar agar propagasi gradien lebih efektif. Berdasarkan evaluasi
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akurasi dan waktu komputasi, learning rate terbaik untuk tahap pengujian dropout selanjutnya adalah 0.0003 untuk
MobileNetV2 dan 0.0005 untuk InceptionV3.

3.3.2 Drop Out

Pada tahap ini, pengujian dropout dilakukan menggunakan learning rate terbaik dari tahap sebelumnya,
yaitu 0.0003 untuk MobileNetV2 dan 0.0005 untuk InceptionV3, dengan hyperparameter lainnya dipertahankan
pada nilai default. Evaluasi difokuskan pada akurasi sebagai indikator utama, disertai precision, recall, dan F1-
score sebagai metrik pendukung. Hasil pada Gambar 5 menunjukkan bahwa MobileNetV2 mencapai performa
terbaik pada dropout 0.2 dengan akurasi 0.955, precision 0.948, recall 0.974, dan F1-score 0.961. Dropout rendah
(0.1-0.2) membantu menjaga stabilitas pembelajaran, sedangkan nilai di atas 0.3 mulai menurunkan performa dan
menjadi sangat buruk pada dropout ekstrem 0.8-1.0. Temuan ini menunjukkan bahwa arsitektur ringan seperti
MobileNetV2 tidak membutuhkan regularisasi besar dan sensitif terhadap dropout agresif. Sebaliknya,
InceptionVV3 mencapai performa terbaik pada dropout 0.8 dengan akurasi 0.937, precision 0.928, recall 0.965, dan
F1-score 0.946. Kompleksitas arsitektur yang lebih besar menyebabkan model rentan overfitting pada dropout
rendah, sehingga dropout tinggi membantu meningkatkan generalisasi. Pada rentang 0.1-0.3, selisih besar antara
akurasi training dan validasi menjadi indikator overfitting. Dari sisi efisiensi, MobileNetVV2 membutuhkan sekitar
2 menit per epoch, jauh lebih cepat dibandingkan InceptionV/3 yang memerlukan 4-5 menit. Perbedaan komputasi
tersebut sejalan dengan kompleksitas arsitektur, tetapi pola efektivitas dropout tetap konsisten: MobileNetV2
optimal pada dropout rendah, sedangkan InceptionVV3 membutuhkan dropout tinggi.

Hasil tersebut kemudian diperkuat melalui analisis statistik ANOVA (Analysis of Variance) yang
diterapkan pada nilai akurasi dan waktu komputasi dari seluruh variasi dropout. Pengujian ini menunjukkan bahwa
penggunaan dropout memiliki pengaruh signifikan terhadap perubahan akurasi pada kedua model karena nilai p-
value berada jauh di bawah ambang 0.05. Kondisi tersebut menegaskan bahwa perbedaan performa yang muncul
tidak bersifat acak, melainkan dipengaruhi langsung oleh variasi tingkat dropout. Pada MobileNetV2, kelompok
dropout rendah 0.1-0.2 membentuk Kkluster akurasi yang berbeda secara signifikan dibandingkan kelompok
dropout tinggi 0.6-1.0, sehingga memperlihatkan sensitivitas arsitektur ringan terhadap regularisasi yang terlalu
besar. Sementara itu, pada InceptionV3, dropout tinggi memberikan peningkatan stabil yang tidak muncul pada
kelompok dropout rendah, menunjukkan kebutuhan regularisasi yang lebih kuat pada arsitektur yang
kompleks.Analisis yang sama juga menunjukkan bahwa waktu komputasi tidak mengalami perbedaan signifikan
antar variasi dropout, mengindikasikan bahwa perubahan durasi pelatihan lebih dipengaruhi oleh karakteristik
arsitektur masing-masing daripada tingkat dropout. Berdasarkan seluruh rangkaian eksperimen, baik dari sisi
performa maupun validitas statistik, konfigurasi terbaik ditentukan berdasarkan akurasi tertinggi untuk masing-
masing model. Oleh karena itu, dropout 0.2 dipilih sebagai konfigurasi optimal untuk MobileNetV2, sedangkan
dropout 0.8 ditetapkan sebagai konfigurasi terbaik untuk InceptionV3.

Perbandingan Akurasi Model MobileNetV2 dan
InceptionV3 terhadap Variari Drop Out
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Gambar 5. Grafik Perbandingan Akurasi MobileNetV2 dan InceptionV3 terhadap Drop Out

3.3.3  Batch Size

Tahap ini menguji pengaruh variasi batch size terhadap performa MobileNetV2 dan InceptionV3 dengan
menggunakan konfigurasi learning rate dan dropout terbaik dari eksperimen sebelumnya, yaitu 0.0003 dan dropout
0.2 untuk MobileNetV/2 serta 0.0005 dan dropout 0.8 untuk InceptionV3. Visualisasi hasil pengujian ditampilkan
pada Gambar 6. Variasi batch size diberikan pada rentang 4 hingga 128 yang memengaruhi stabilitas gradien dan
pola pembaruan bobot selama proses pelatihan. Pada batch size kecil seperti 4 dan 8, kedua model menunjukkan
fluktuasi akurasi akibat gradien yang tidak stabil, dengan efek yang lebih terasa pada InceptionV3 karena
arsitekturnya yang kompleks. Ketika batch size dinaikkan pada rentang menengah yaitu 16 dan 32, pola pelatihan
menjadi lebih stabil karena lebih banyak sampel yang berkontribusi dalam proses propagasi balik. Konsistensi
gradien meningkat sehingga nilai akurasi bergerak lebih teratur, meskipun belum mencapai performa
optimum.Performa terbaik tercapai pada batch size 128, di mana MobileNetVV2 memperoleh akurasi 0.980 dan
InceptionVV3 mencapai 0.955.Nilai ini menunjukkan bahwa batch besar memberikan stabilitas gradien yang lebih
efektif, memungkinkan model mengenali pola tekstur retakan secara lebih seragam pada setiap pembaruan bobot.
Walaupun batch size besar meningkatkan waktu pemrosesan per iterasi, efisiensi total pelatihan tetap meningkat
karena model lebih cepat mencapai konvergensi dalam jumlah epoch yang lebih sedikit.MobileNetV2 tetap
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menunjukkan keunggulan efisiensi waktu, sejalan dengan arsitekturnya yang lebih ringan dan jumlah
parameternya yang lebih sedikit.

Perbandingan Akurasi Model MobileNetV2 dan
InceptionV3 terhadap Variasi Batch Size
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Gambar 6. Grafik Perbandingan Akurasi MobileNetV2 dan InceptionV3 terhadap Batch Size
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Hasil tersebut kemudian diperkuat melalui analisis statistik ANOVA (Analysis of Variance) yang
diterapkan pada akurasi kedua model. Analisis ini menunjukkan bahwa perbedaan rerata performa tidak signifikan
secara statistik, sehingga variasi akurasi pada seluruh konfigurasi lebih dipengaruhi oleh stabilitas gradien yang
meningkat pada batch besar dibandingkan oleh perbedaan arsitektural antara MobileNetV2 dan InceptionV3.
Kondisi ini mengindikasikan bahwa batch size 128 memberikan dampak peningkatan yang relatif seimbang pada
kedua CNN.Dari sisi efisiensi, MobileNetV2 menunjukkan waktu komputasi yang jauh lebih rendah pada seluruh
variasi batch size, mulai dari 0.90 detik pada batch size 4 hingga 14.31 detik pada batch size 128. Sementara itu,
InceptionV3 membutuhkan waktu yang lebih lama, yaitu 2.60 detik pada batch size 4 dan meningkat hingga 30.27
detik pada batch size 128. Meskipun perbedaan waktu komputasi tampak sangat besar, hasil ANOVA menunjukkan
bahwa rerata kedua kelompok tetap tidak berbeda signifikan, menandakan bahwa varian waktu terutama
dipengaruhi oleh kompleksitas internal InceptionV3.Hal ini memperlihatkan bahwa peningkatan batch size
memengaruhi kedua model dengan arah yang sama, tetapi Inception\V3 menanggung beban komputasi yang lebih
besar akibat kedalaman arsitekturnya.Berdasarkan seluruh hasil tersebut, batch size 128 dipilih sebagai konfigurasi
optimal karena memberikan keseimbangan terbaik antara akurasi dan stabilitas pembelajaran. MobileNetV2
memperoleh manfaat paling besar dari penggunaan batch besar tanpa mengorbankan efisiensi, sedangkan
InceptionV3 tetap mengalami peningkatan performa meskipun terbebani oleh waktu komputasi yang lebih tinggi.
Konfigurasi ini kemudian digunakan pada tahap pengujian jumlah epoch untuk memastikan konsistensi performa
pada proses pelatihan berikutnya.

3.3.4  Epoch

Pada tahap ini, kedua model dilatih menggunakan kombinasi hyperparameter terbaik dari eksperimen sebelumnya,
yaitu learning rate 0.0003 dan dropout 0.2 untuk MobileNetV2, serta learning rate 0.0005 dan dropout 0.8 untuk
InceptionV3, dengan batch size 128 untuk keduanya. Tujuan pengujian ini adalah menentukan titik konvergensi
sekaligus mengidentifikasi tanda underfitting atau overfitting. Pola pelatihan terhadap variasi epoch dapat dilihat
pada Gambar 7, yang juga menunjukkan stabilitas gradien dan kapasitas masing-masing model dalam
mengekstraksi fitur penting dari citra retakan beton.Secara umum, kedua model menunjukkan peningkatan
performa seiring bertambahnya epoch sebelum akhirnya mencapai titik optimum dan stagnasi. Pada InceptionV3,
akurasi meningkat dari 0,955 pada epoch ke-10 menjadi 0,966 pada epoch ke-40, dengan F1-score tertinggi 0,970,
yang menunjukkan bahwa arsitektur lebih dalam memerlukan waktu lebih lama untuk stabilisasi gradien dan
pembelajaran fitur secara menyeluruh.

Perbandingan Akurasi Model MobileNetV2 dan
InceptionV3 terhadap Variasi Epoch
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Gambar 7. Grafik Perbandingan Akurasi MobileNetV2 dan InceptionV3 terhadap Epoch
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Analisis ANOVA terhadap akurasi menunjukkan bahwa perbedaan performa kedua model nyata dan
konsisten, mengindikasikan keunggulan MobileNetV/2 dalam menangkap fitur penting. Seiring penambahan epoch
hingga 50, peningkatan performa tidak lagi signifikan dan mulai muncul tanda overfitting ringan, sementara waktu
pelatihan InceptionVV3 meningkat drastis dari sekitar 21 menjadi hampir 97 menit sehingga tambahan epoch tidak
memberikan manfaat yang sebanding. MobileNetVV2 menunjukkan tren peningkatan lebih cepat dan stabil, dengan
akurasi naik dari 0.975 pada epoch ke-10 menjadi 0.981 pada epoch ke-30 serta F1-score tertinggi 0.984. Setelah
epoch ke-30, performa kedua model cenderung stagnan, menandakan titik jenuh pembelajaran, sekaligus
menunjukkan bahwa arsitektur ringan mencapai konvergensi lebih awal. Waktu pelatihan meningkat hingga lebih
dari 70 menit pada epoch ke-50, menegaskan bahwa penambahan epoch tidak lagi efisien. Analisis ANOVA
terhadap durasi komputasi menunjukkan bahwa meskipun MobileNetV2 lebih cepat, variasi waktu antar model
tidak signifikan secara statistik sehingga memperlihatkan stabilitas proses pelatihan. Dari sisi efisiensi,
MobileNetV2 tetap unggul dengan performa tinggi dan waktu pelatihan jauh lebih singkat dibandingkan
InceptionV3. Berdasarkan keseluruhan evaluasi, epoch optimal ditetapkan pada 30 untuk MobileNetV2 dan 40
untuk InceptionVV3 karena memberikan keseimbangan terbaik antara akurasi, F1-score, dan efisiensi komputasi,
sehingga digunakan sebagai konfigurasi akhir dalam tahap evaluasi model.

3.4 Analisis Perbandingan Model

Pada penelitian ini, proses tuning hyperparameter dilakukan secara bertahap untuk menentukan
konfigurasi pelatihan terbaik bagi kedua model, sebagaimana ditunjukkan pada Tabel 4. Pengujian dilakukan pada
rentang learning rate 0.0001-0.001, dropout 0.1-1.0, batch size 4-128, dan epoch 10-50 untuk memastikan bahwa
setiap kombinasi hyperparameter dievaluasi secara komprehensif. Seluruh nilai performa yang dianalisis
merupakan rata-rata dari lima fold Stratified 5-Fold Cross-Validation sebagaimana dijelaskan pada metodologi,
sehingga hasil yang diperoleh mencerminkan stabilitas performa pada distribusi data yang berbeda. Berdasarkan
eksplorasi bertahap tersebut, MobileNetVV2 mencapai stabilitas pelatihan terbaik pada learning rate 0.0003, dropout
0.2, batch size 128, dan 30 epoch, sesuai konfigurasi optimal pada Tabel 4. Sementara itu, InceptionV3
menunjukkan performa paling optimal pada learning rate 0.0005, dropout 0.8, batch size 128, dan 40 epoch, di
mana arsitektur yang lebih dalam membuat model lebih sensitif terhadap perubahan hyperparameter sehingga
memerlukan regularisasi yang lebih tinggi untuk mencegah overfitting. Perbedaan kebutuhan konfigurasi ini
menegaskan bahwa Kkarakteristik arsitektur sangat memengaruhi respons model terhadap pengaturan
hyperparameter yang diuji.

Pengaruh langsung dari pengaturan tersebut terlihat pada evaluasi kinerja pada Tabel 5. MobileNetV2
memberikan performa terbaik dengan akurasi 0.981, presisi 0.979, recall 0.988, dan F1-score 0.984. Nilai recall
yang tinggi menunjukkan bahwa model ini mampu mengidentifikasi hampir seluruh citra retakan, sehingga risiko
false negative dapat diminimalkan, sebuah aspek penting dalam pemantauan struktur. Selain itu, waktu pelatihan
yang lebih singkat sekitar 70 menit mencerminkan efisiensi komputasi yang unggul dan konsisten dengan karakter
arsitektur yang ringan. InceptionVV3 menghasilkan akurasi 0.966, presisi 0.962, recall 0.978, dan F1-score 0.970.
Walaupun performanya tetap kompetitif, model ini lebih rentan terhadap pola tekstur permukaan yang menyerupai
retakan sehingga menghasilkan false positive maupun false negative yang lebih besar, ditambah waktu pelatihan
yang lebih lama sekitar 97 menit. Perbedaan performa ini juga sejalan dengan karakteristik arsitektur, di mana
struktur MobileNetV2 yang lebih ringan cenderung memberikan respons gradien yang stabil pada dataset dengan
karakter visual homogen, sedangkan InceptionVV3 memerlukan kompleksitas visual yang lebih tinggi untuk
mencapai performa optimal. Temuan ini turut selaras dengan beberapa penelitian terdahulu. Performa
MobileNetV2 yang stabil dan efisien konsisten dengan laporan Nguyen et al. (2024) yang melaporkan bahwa
model ringan bekerja optimal pada dataset dengan variasi tekstur yang tidak terlalu kompleks[15]. Adapun
perbedaan hasil dengan Arafin et al. (2024), yang menempatkan InceptionV3 sebagai model unggul, menegaskan
bahwa efektivitas arsitektur CNN sangat dipengaruhi oleh tingkat kompleksitas tekstur dataset yang
digunakan[12]. Secara keseluruhan, MobileNetV2 menunjukkan respons pelatihan yang lebih stabil, waktu
komputasi yang lebih efisien, serta akurasi validasi yang lebih tinggi dibandingkan InceptionV3, sehingga lebih
sesuai dengan karakter dataset retakan yang relatif homogen.

Tabel 4. Performa Hyperparameter Terbaik dari Kedua Model CNN

Model Learning Rate Drop Out Batch Size Epoch
MobileNetV2 0.0003 0.2 128 30
InceptionV3 0.0005 0.8 128 40

Tabel 5. Perbandingan Kinerja Akhir Model MobileNetV2 dan InceptionV3
Model Akurasi Presisi Recall F1-Score Waktu
Pelatihan(menit)
MobileNetV2 0.981 0.979 0.988 0.984 ~70
InceptionV3 0.966 0.962 0.978 0.970 =97

Visualisasi pada Tabel 6 menunjukkan perbedaan karakteristik prediksi antara InceptionV3 dan
MobileNetV2 berdasarkan contoh klasifikasi benar dan salah. Pada bagian InceptionV3 Klasifikasi Benar, model
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mengidentifikasi retakan dengan tepat ketika citra menampilkan pola retakan yang jelas dan memiliki kontras kuat.
Namun pada bagian InceptionV3 Klasifikasi Salah, citra yang memiliki tekstur beton kasar atau noise yang tinggi
menyebabkan model memberikan aktivasi yang menyebar sehingga model melakukan false positive maupun false
negative. Kondisi ini menunjukkan bahwa InceptionV3 memiliki sensitivitas tinggi terhadap variasi permukaan
beton. Sebaliknya, pada bagian MobileNetV2 Klasifikasi Benar, model menyoroti area retakan secara lebih
terfokus dan konsisten, bahkan ketika citra memiliki retakan tipis atau kontras rendah. Pada bagian MobileNetV2
Klasifikasi Salah, jumlah kesalahan yang lebih sedikit menunjukkan bahwa kualitas tekstur yang buruk,
pencahayaan rendah, atau permukaan yang sangat tidak rata menjadi faktor utama terjadinya kekeliruan. Aktivasi
yang salah juga muncul dengan cakupan yang lebih kecil dibandingkan InceptionV3. Secara keseluruhan,
visualisasi tersebut menguatkan hasil evaluasi kuantitatif, di mana MobileNetVV2 memberikan prediksi yang lebih
stabil dan lebih tahan terhadap variasi tekstur. Mekanisme ekstraksi fitur lokal yang lebih efektif pada
MobileNetV2 menjadikannya model yang lebih sesuai untuk sistem deteksi retakan, terutama untuk perangkat
dengan keterbatasan komputasi seperti drone inspeksi atau sistem edge-processing berbasis Jetson Nano. Temuan
ini juga menunjukkan bahwa MobileNetV2 memiliki potensi yang baik untuk digunakan pada aplikasi inspeksi
lapangan secara real-time. Selain itu, konsistensi aktivasi pada area retakan menegaskan bahwa model ini mampu
mempertahankan kinerja meskipun dihadapkan pada kondisi citra yang lebih menantang.
Tabel 6. Visualisasi Klasifikasi Benar dan Salah dari InceptionV3 dan MobileNetV2

InceptionV3: Klasifikasi Benar InceptionV3: Klasifikasi Salah
i j
J
L — - .- ey Lt ’
Asli: Crack Asli: Crack Asli: Crack Asli: Crack Asi: Crack Asli- éacAl; Asli: E;QE Asli Crack
Predict: Crack Predict: Crack Predict: Crack Predict: Crack Predict: No Predict: No Predict: No Predict: No
Crack Crack Crack Crack
MobileNetV2: Klasifikasi Benar MobileNetV2: Klasifikasi Salah

Asli: Crack Asli: No Crack Asli: No Crack Asli: No Crack
Predict: Crack Predict: Crack Predict: Crack Predict: Crack Predict: No Predict: Crack Predict: Crack Predict: Crack
Crack

3.5 Pembahasan

Respons kedua model terhadap perubahan hyperparameter memperlihatkan bahwa karakteristik arsitektur
berperan besar dalam menentukan stabilitas pembelajaran. MobileNetV2 yang berbasis inverted residual dan
depthwise separable convolution menunjukkan perilaku yang lebih stabil di hampir seluruh konfigurasi, terutama
karena desainnya yang ringan membuat model ini tidak terlalu sensitif terhadap variasi regularisasi maupun ukuran
batch. Sementara itu, InceptionV3 justru lebih mudah mengalami fluktuasi performa akibat kedalaman jaringan
dan jumlah parameternya yang jauh lebih besar, sehingga membutuhkan pengaturan hyperparameter yang lebih
hati-hati.Perbedaan kebutuhan dropout dan epoch pada kedua model memperlihatkan bagaimana kompleksitas
arsitektur memengaruhi kecenderungan overfitting. Model yang ringan dapat bekerja baik meskipun diberikan
regularisasi minimal, sedangkan model yang lebih dalam justru memerlukan keseimbangan antara kapasitas
jaringan dan tingkat regularisasi agar tidak kehilangan kemampuan ekstraksi fitur. Temuan ini menjelaskan
mengapa performa kedua model cenderung berbeda meskipun diuji pada dataset yang sama dan rentang parameter
yang identik.Analisis statistik melalui ANOVA juga menunjukkan bahwa beberapa hyperparameter memberikan
pengaruh lebih signifikan dibanding lainnya, khususnya yang berkaitan dengan mekanisme regularisasi dan durasi
pelatihan. Hal ini mengonfirmasi bahwa konfigurasi optimal tidak hanya ditentukan oleh besarnya parameter,
tetapi oleh kecocokannya dengan struktur internal model. Secara keseluruhan, hasil pembelajaran memperkuat
bahwa model yang lebih efisien secara arsitektural dapat memberikan generalisasi lebih baik dan komputasi lebih
ringan pada dataset dengan karakter visual yang relatif homogen, seperti citra permukaan beton.

4. KESIMPULAN

Penelitian ini dilakukan untuk menjawab kebutuhan akan sistem pendeteksi retakan beton yang akurat dan efisien,
mengingat metode inspeksi visual manual masih rentan terhadap subjektivitas dan kesalahan identifikasi. Melalui
serangkaian eksperimen tuning hyperparameter menggunakan Stratified 5-Fold Cross-Validation, penelitian ini
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berhasil mengidentifikasi konfigurasi pelatihan yang paling stabil bagi dua arsitektur CNN, yaitu MobileNetV2 dan
InceptionV3. Temuan utama menunjukkan bahwa MobileNetV2 memberikan performa paling konsisten dalam
mempelajari pola visual retakan, termasuk pada citra dengan tekstur beton yang kompleks maupun kontras rendah,
sehingga model ini menjadi pilihan paling efektif untuk sistem deteksi retakan otomatis. Analisis ANOVA
memperlihatkan bahwa tidak semua hyperparameter memberikan kontribusi yang sama terhadap performa akhir.
Dropout dan jumlah epoch memiliki pengaruh signifikan terhadap kualitas pembelajaran, sedangkan learning rate
dan batch size tidak menunjukkan perbedaan yang berarti karena stabilitas gradien bawaan MobileNetV2. Selain
itu, ANOVA pada waktu komputasi menegaskan bahwa perbedaan kecepatan antara kedua model bukan hanya
akibat variasi hyperparameter, melainkan karakter arsitektural yang lebih ringan sehingga MobileNetV?2
consistently lebih efisien. Implikasi praktis dari temuan ini adalah bahwa arsitektur ringan seperti MobileNetV2
memiliki potensi besar untuk diterapkan pada perangkat edge berdaya rendah misalnya Jetson Nano, Raspberry
Pi, atau modul komputasi serupa yang membutuhkan akurasi tinggi dengan konsumsi komputasi minimal.Untuk
pengembangan selanjutnya, penelitian perlu diperluas dengan pengujian pada citra lapangan untuk memastikan
ketangguhan model terhadap variasi kondisi visual nyata, seperti pencahayaan tidak merata, tekstur permukaan
yang tidak homogen, serta gangguan lingkungan. Selain itu, studi komparatif dengan model yang lebih modern
seperti EfficientNet atau Vision Transformer penting dilakukan untuk mengevaluasi potensi peningkatan akurasi
dan efisiensi. Dengan penerapan teknik optimasi seperti pruning dan kuantisasi, sistem ini berpotensi
dikembangkan menjadi solusi siap pakai yang dapat berjalan secara optimal pada perangkat bergerak atau edge
device, sehingga benar-benar memberikan dampak praktis dalam inspeksi struktur beton.
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