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Abstrak- Deteksi retakan pada permukaan beton merupakan langkah penting dalam menjaga keandalan dan keselamatan 
struktur infrastruktur. Metode inspeksi visual masih memiliki keterbatasan karena dipengaruhi kondisi lingkungan, 

subjektivitas operator, serta potensi kesalahan identifikasi. Untuk mengatasi hal tersebut, penelitian ini membandingkan 

performa dua arsitektur Convolutional Neural Network (CNN), yaitu MobileNetV2 dan InceptionV3, dalam melakukan 

klasifikasi citra retakan beton. Dataset yang digunakan adalah NYA-Crack-DATA yang terdiri dari dua kelas, yaitu crack dan 
no-crack, dengan total 5.026 citra. Seluruh citra diproses melalui tahapan pra-pemrosesan dan augmentasi untuk menghasilkan 

data yang seragam, lebih variatif, serta mendukung proses pelatihan yang stabil pada kedua model modern tersebut.Penelitian 

ini berfokus pada analisis pengaruh hyperparameter terhadap performa kedua arsitektur CNN tersebut. Empat hyperparameter 

utama diuji secara bertahap, meliputi learning rate, dropout, batch size, dan epoch. Evaluasi setiap konfigurasi dilakukan 
menggunakan Stratified 5-Fold Cross-Validation agar hasil yang diperoleh lebih stabil, konsisten, dan tidak bias. MobileNetV2 

menunjukkan performa terbaik pada kombinasi learning rate 0.0005, dropout 0.2, batch size 128, dan 30 epoch, dengan akurasi 

0.981, presisi 0.979, recall 0.988, dan F1-score 0.984. Sementara itu, InceptionV3 mencapai akurasi tertinggi sebesar 0.966 

pada konfigurasi learning rate 0.0003, dropout 0.8, batch size 128, dan 40 epoch.Hasil penelitian menunjukkan bahwa 
MobileNetV2 lebih unggul dalam akurasi, stabilitas, serta efisiensi komputasi dibandingkan InceptionV3, sehingga lebih sesuai 

untuk implementasi nyata pada perangkat dengan keterbatasan sumber daya komputasi modern. 

Keywords: CNN; Hyperparameter; InceptionV3; Klasifikasi Retakan; MobileNetV2. 

Abstract- Crack detection on concrete surfaces is an essential step in maintaining the reliability and safety of infrastructure 
structures. Manual visual inspection methods still have limitations due to environmental conditions, operator subjectivity, and 

potential identification errors. To address these issues, this study compares the performance of two Convolutional Neural 

Network (CNN) architectures, namely MobileNetV2 and InceptionV3, for classifying concrete crack images. The dataset used 

is NYA-Crack-DATA, consisting of two classes crack and no crack with a total of 5,026 images. All images were processed 
through pre-processing and augmentation steps to produce consistent, more diverse data and support stable training on both 

modern models. This study focuses on analyzing the influence of hyperparameters on the performance of both CNN 

architectures. Four key hyperparameters were examined gradually, including learning rate, dropout, batch size, and epoch. Each 

configuration was evaluated using Stratified 5-Fold Cross-Validation to ensure results that are more stable, consistent, and 
unbiased. MobileNetV2 achieved the best performance with a learning rate of 0.0005, dropout of 0.2, batch size of 128, and 30 

epochs, resulting in an accuracy of 0.981, precision of 0.979, recall of 0.988, and F1-score of 0.984. Meanwhile, InceptionV3 

reached its highest accuracy of 0.966 with a learning rate of 0.0003, dropout of 0.8, batch size of 128, and 40 epochs. The 

findings indicate that MobileNetV2 outperforms InceptionV3 in terms of accuracy, stability, and computational efficiency, 
making it more suitable for real implementation on devices with limited computational resources. 

Keywords: Crack Classification; CNN; Hyperparameters; InceptionV3; MobileNetV2. 

1. PENDAHULUAN  
Pembangunan infrastruktur memiliki peran penting dalam mendukung pertumbuhan ekonomi dan 

meningkatkan kesejahteraan masyarakat[1]. Infrastruktur memadai mampu mempercepat mobilitas, distribusi 

barang dan jasa, serta berbagai aktivitas ekonomi[2]. Dalam proses pembangunannya, kebutuhan terhadap material 

konstruksi yang kuat, tahan lama, dan efisien menjadi aspek yang sangat penting. Beton menjadi salah satu material 

yang paling banyak digunakan karena memiliki kekuatan tekan tinggi, mudah dibentuk, dan relatif tahan terhadap 

perubahan cuaca[3]. Hampir seluruh proyek besar seperti jembatan, jalan raya, gedung bertingkat, dan bendungan 

menggunakan beton sebagai bahan utama. Namun dibalik keunggulannya, beton juga memiliki kelemahan berupa 

ketahanan tarik yang rendah sehingga mudah mengalami keretakan, yang berpotensi menurunkan kualitas, 

keamanan, dan umur pakai struktur[4].Di Indonesia, permasalahan keretakan pada infrastruktur seperti jalan dan 

jembatan masih sering dijumpai[5]. Proses keretakan pada struktur beton dipercepat oleh iklim tropis yang penuh 

dengan kelembapan, perubahan suhu, dan beban lalu lintas yang signifikan[6]. Menurut data terbaru pada Statistik 

Infrastruktur PUPR Tahun 2023, tingkat kemantapan jalan nasional meningkat dari 92,20% pada tahun 2022 

menjadi 94,18% pada tahun 2023. Jalan provinsi juga mengalami kenaikan dari 70% menjadi 71,33%, sedangkan 

jalan kabupaten/kota naik dari 56% menjadi 57,90%, sebagaimana tercantum pada situs resmi PUPR [7]-[8]. 

Meskipun demikian, kesenjangan kualitas antara jalan nasional dan jalan daerah masih terlihat jelas, terutama pada 

infrastruktur daerah yang membutuhkan perhatian lebih karena lebih rentan terhadap kerusakan struktural seperti 

retakan pada lapisan beton. Berdasarkan permasalahan tersebut, dibutuhkan sistem yang mampu memantau 
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kondisi beton secara cepat dan akurat agar kerusakan dapat terdeteksi lebih dini[9]. Metode manual seperti inspeksi 

visual atau pengujian Nondestruktif (NDT) masih banyak digunakan, namun cara ini memakan waktu, bergantung 

pada keahlian petugas, dan berisiko menimbulkan kesalahan yang dapat membahayakan struktur[10]. Teknologi 

kecerdasan buatan (Artificial Intelligence/AI) menawarkan solusi yang lebih objektif, efisien, dan terukur, karena 

mampu menganalisis citra permukaan beton secara otomatis dan konsisten[11]. Dalam hal ini, Convolutional 

Neural Network (CNN) menjadi salah satu pendekatan paling efektif dalam mendeteksi pola, tekstur, dan bentuk 

retakan pada permukaan beton dengan tingkat akurasi yang tinggi[11]. 

Berbagai penelitian sebelumnya telah berkontribusi menyelesaikan permasalahan keretakan beton dengan 

mengembangkan metode deteksi retak beton berbasis deep learning, khususnya dengan arsitektur Convolutional 

Neural Network (CNN). Arafin et al. menguji beberapa model CNN seperti VGG19, ResNet50, dan InceptionV3 

pada dataset retak dan spalling beton dengan variasi optimizer dan learning rate, di mana InceptionV3 mencapai 

akurasi terbaik 91,98% untuk segmentasi spalling, sedangkan EfficientNetB3–U-Net unggul pada segmentasi 

retakan dengan F1-score 95,66%[12]. Zadeh et al. membandingkan model transfer learning (VGG19, ResNet50, 

InceptionV3, EfficientNetV2) untuk klasifikasi retak permukaan beton, dengan EfficientNetV2 memperoleh hasil 

tertinggi 99,6%[13]. Penelitian lain oleh Luqman Ali et al. (2021) dalam jurnal Sensors mengevaluasi performa 

VGG16, VGG19, ResNet50, dan InceptionV3 pada delapan dataset berbeda dengan pengaturan hyperparameter 

seperti learning rate, dropout, dan epoch 20, dan menemukan bahwa ukuran dan variasi data lebih memengaruhi 

akurasi dibanding kompleksitas model, dengan InceptionV3 unggul pada dataset menengah[14]. Sementara itu, 

Nguyen et al. (2024) mengoptimasi CNN untuk deteksi retak beton pada Jetson Nano, menguji ResNet50, 

MobileNetV2, DenseNet121, dan EfficientNetB0 dengan variasi batch size, learning rate, dan epoch, 

menghasilkan MobileNetV2 dengan akurasi 97,5% serta waktu inferensi tercepat dan konsumsi daya paling 

efisien[15]. Penelitian serupa yang menggunakan GLCM yang dikombinasikan dengan klasifikasi jaringan neural 

sederhana dari [16] menunjukkan hasil yang cukup baik dengan akurasi puncak sebesar 95% pada data berjumlah 

sedikit. Hasil-hasil tersebut membuktikan bahwa teknologi deep learning sangat efektif dalam mendeteksi 

retakan pada beton[12]-[15]. Meskipun demikian, sebagian besar studi masih berfokus pada pengembangan 

arsitektur model dan perbandingan performa antar jaringan Convolutional Neural Network (CNN). Kajian 

mengenai pengaruh pengaturan parameter pelatihan terhadap hasil klasifikasi masih terbatas, padahal parameter 

seperti learning rate, dropout, batch size, dan jumlah epoch memiliki peran penting dalam mengoptimalkan proses 

pembelajaran model serta mencegah overfitting[17].Berdasarkan celah tersebut, penelitian ini berfokus pada 

optimasi kombinasi hyperparameter pada dua model  CNN, yaitu InceptionV3 dan MobileNetV2, untuk klasifikasi 

biner citra retakan beton. InceptionV3 dipilih karena mampu mengekstraksi fitur visual secara kompleks dan 

memiliki kemampuan generalisasi yang baik[18], sementara MobileNetV2 dipilih karena ringan dan efisien 

sehingga cocok untuk implementasi di perangkat dengan sumber daya terbatas[19]. Proses pelatihan model 

dilakukan dengan metode k-fold cross-validation agar hasil yang diperoleh lebih stabil dan akurat, serta dapat 

mengurangi risiko overfitting[20].  
Kontribusi utama penelitian ini terletak pada belum adanya studi yang secara komparatif menguji proses 

tuning hyperparameter pada dua model CNN tersebut menggunakan dataset NYA-Crack-DATA secara sistematis. 

Penelitian sebelumnya juga belum membandingkan perilaku learning rate, dropout rate, batch size, dan jumlah 

epoch pada InceptionV3 dan MobileNetV2 dalam konteks dataset yang sama, sehingga belum tersedia kajian yang 

menjelaskan bagaimana konfigurasi pelatihan dapat memengaruhi performa model. Penelitian ini kemudian 

menawarkan sudut pandang baru dengan menyediakan pendekatan yang lebih terarah dan berbasis bukti untuk 

mengoptimalkan klasifikasi retakan beton berbasis deep learning. Secara akademik, penelitian ini menyusun 

proses tuning hyperparameter secara terstruktur untuk memperoleh konfigurasi optimal pada kedua model, 

sekaligus memberikan bukti empiris mengenai pengaruh variasi hyperparameter terhadap performa klasifikasi 

retakan beton. Secara praktis, penelitian ini menghasilkan model yang lebih akurat, stabil, dan siap diterapkan 

untuk mendukung pemantauan kondisi infrastruktur secara lebih cepat dan tepat. Berdasarkan tujuan tersebut, 

penelitian ini merumuskan tiga pertanyaan utama: pengaruh variasi hyperparameter terhadap performa model, 

perbandingan kemampuan InceptionV3 dan MobileNetV2 pada dataset NYA-Crack-DATA, serta identifikasi 

kombinasi hyperparameter yang paling optimal dan stabil untuk klasifikasi citra retakan beton. Rumusan masalah 

tersebut menjadi landasan dalam merancang eksperimen dan analisis, sehingga hasil penelitian dapat memberikan 

kontribusi metodologis maupun praktis dalam pengembangan sistem deteksi kerusakan beton berbasis citra. 

2. METODOLOGI PENELITIAN 

2.1 Tahapan Penelitian 

Tahapan penelitian ini divisualisasikan pada Gambar 1 sebagai representasi runtutan proses yang 

dilakukan mulai dari akuisisi dataset hingga evaluasi performa model. Proses dimulai dari pengumpulan dataset 
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serta penyusunan struktur folder kelas. Selanjutnya dilakukan pra-pemrosesan melalui resize, normalisasi, dan 

augmentasi data untuk memastikan kualitas input yang seragam. Pada tahap perancangan model, dilakukan 

pemilihan arsitektur InceptionV3 dan MobileNetV2 yang telah dipretrain pada ImageNet. Tahap berikutnya adalah 

penentuan hyperparameter yang meliputi learning rate, dropout, batch size, dan jumlah epoch, serta penggunaan 

loss function BCEWithLogits dan optimizer Adam. Evaluasi model dilakukan menggunakan k-fold cross-

validation untuk memperoleh nilai akurasi, presisi, recall, dan F1-score secara lebih stabil. 

 

Gambar 1.Alur Kerja Penelitian 

2.2 Akuisisi Dataset 

Dataset yang digunakan dalam penelitian ini adalah NYA-Crack-DATA, yaitu dataset publik dari 

Mendeley Data [21]. Dataset ini berisi citra permukaan beton yang terbagi menjadi dua kelas utama, yaitu Crack 

(retak) dan No Crack (tidak retak), dengan total 5026 citra yang terdiri atas 2167 citra Crack dan 2859 citra No 

Crack. Contoh visual dari kedua kelas ditampilkan pada Tabel 1 sebagai gambaran karakteristik dataset yang 

digunakan. Pemilihan NYA-Crack-DATA dilakukan karena ketersediaannya sebagai dataset publik dengan 

jumlah citra yang memadai serta keberagaman visual yang meliputi variasi tekstur permukaan, kondisi 

pencahayaan, ukuran retakan, dan tingkat kehalusan beton. Kualitas citra yang baik dan anotasi kelas yang jelas 

menjadikan dataset ini representatif untuk tugas deteksi retakan beton. Variasi kondisi visual ini juga memberikan 

dasar yang kuat bagi model untuk mempelajari pola retakan secara lebih komprehensif dan meningkatkan potensi 

generalisasi pada berbagai lingkungan nyata. 

Tabel 1.Distribusi Dataset Berdasarkan Kelas Crack dan No Crack 

Label Jumlah Data Data ke-1 Data ke-2 Data ke-3 Data ke-4 

Crack 2167 

    

No Crack 2859 

    

2.3 Pra-pemrosesan dan Augmentasi Data 

Pra-pemrosesan dilakukan untuk memastikan seluruh citra memiliki karakteristik input yang seragam, 

baik dari segi ukuran, intensitas piksel, maupun distribusi kanal warna. Standarisasi ini diperlukan karena model 

CNN sangat sensitif terhadap variasi yang tidak relevan dan membutuhkan input yang konsisten agar proses 

ekstraksi fitur berlangsung stabil[21]. Tahap pertama adalah resize, yaitu mengubah dimensi citra ke ukuran tetap 

sesuai arsitektur yang digunakan. MobileNetV2 memerlukan citra berukuran 224×224 piksel[19], sedangkan 

InceptionV3 membutuhkan 299×299 piksel . Setelah itu, citra dikonversi ke format tensor dengan menskalakan 

nilai piksel dari rentang 0–255 menjadi 0–1 untuk meningkatkan stabilitas numerik selama proses komputasi [9]. 

Tahap selanjutnya adalah normalisasi RGB menggunakan nilai mean dan standard deviation yang digunakan pada 

dataset ImageNet, sehingga distribusi piksel berada pada rentang yang sesuai dengan karakteristik data pra-latih 

model dan dapat mempercepat proses konvergensi[9].Langkah pra-pemrosesan kemudian dilanjutkan dengan 

augmentasi data, yang diterapkan pada data pelatihan untuk meningkatkan keragaman sampel secara artifisial 

sehingga model memperoleh variasi yang lebih luas dan tidak mudah mengalami overfitting[23]. Augmentasi yang 

digunakan meliputi rotation acak hingga ±20° untuk memberikan variasi orientasi citra melalui matriks rotasi dua 

dimensi [24]. Selain itu, digunakan pula transformasi affine yang mencakup translation, shear, dan scaling, yang 

masing-masing menggeser posisi citra, memberikan efek kemiringan, serta mengubah skala objek melalui 

penerapan matriks transformasi linear[24]. Variasi kondisi pencahayaan diperkenalkan melalui brightness jitter, 

yaitu penyesuaian intensitas piksel berbasis faktor acak [24]. Untuk menambah keragaman orientasi, digunakan 

pula horizontal flip dan vertical flip yang membalik citra pada sumbu horizontal maupun vertikal tanpa mengubah 

struktur objek [25]. 
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2.4 Perancangan Arsitektur Model 

2.4.1   Arsitektur InceptionV3 

InceptionV3 merupakan arsitektur CNN lanjutan yang dirancang untuk meningkatkan efisiensi dan 

kedalaman representasi melalui penggunaan factorized convolutions, reduksi dimensi yang agresif, serta 

pemrosesan multi-jalur paralel[26]. Pendekatan ini memungkinkan model menangkap informasi visual pada 

berbagai skala secara simultan, sehingga efektif untuk mendeteksi variasi bentuk dan orientasi pada pola retakan 

beton[13]. Secara matematis, salah satu jalur konvolusi 3×3 dalam modul Inception dapat dinyatakan sebagai 

𝑌3×3(𝑢, 𝑣, 𝑘) = ∑ ∑ ∑𝑋(𝑢 + 𝑖, 𝑣 + 𝑗, 𝑐)

𝐶

𝑐=1

1

𝑗=−1

1

𝑖=−1

 𝑤𝑖,𝑗,𝑐,𝑘 + 𝑏𝑘  

 

                                             

(1) 

Pada persamaan (1), menghitung keluaran konvolusi 3×3, di mana 𝑌(3×3)(𝑢, 𝑣, 𝑘) adalah nilai output pada posisi 

(𝑢, 𝑣) untuk kanal ke-k. Variabel 𝑋(𝑢 + 𝑖, 𝑣 + 𝑗, 𝑐) merepresentasikan nilai masukan yang digeser oleh indeks i 

dan j pada kanal ke-c. Bobot kernel ditunjukkan oleh 𝑤(𝑖,𝑗,𝑐,𝑘), sedangkan C adalah jumlah kanal masukan. Nilai 

𝑏𝑘  merupakan bias untuk kanal keluaran ke-k. Persamaan ini menggambarkan proses penjumlahan hasil perkalian 

antara nilai masukan dan bobot dalam jendela konvolusi 3x3[27].Seluruh jalur yang bekerja secara paralel 

kemudian digabungkan melalui operasi konkatenasi kanal: 

𝑌Inception(𝑢, 𝑣, : ) = Concat(𝑌1×1,  𝑌3×3,  𝑌5×5,  𝑌pool_proj). 

 

(2)        

Persamaan (2) merepresentasikan keluaran blok Inception pada posisi spasial (𝑢, 𝑣). Pada persamaan ini, 

𝑌Inception(𝑢, 𝑣, : ) adalah vektor fitur hasil penggabungan seluruh cabang konvolusi pada koordinat tersebut. 

Variabel 𝑌1×1,  𝑌3×3,  𝑌5×5masing-masing merupakan keluaran dari operasi konvolusi dengan kernel berukuran 

1×1, 3×3, dan 5×5. Sementara itu, 𝑌pool_proj adalah fitur yang dihasilkan dari cabang pooling yang diikuti oleh 

proyeksi konvolusi 1×1. Operasi Concat(⋅)menunjukkan bahwa seluruh keluaran dari empat cabang tersebut 

digabungkan pada dimensi kanal untuk membentuk representasi fitur akhir pada blok Inception.[27]. 

 

Gambar 2. Diagram Arsitektur InceptionV3 

Struktur umum model pada penelitian ini ditunjukkan pada Gambar 2, yang menggambarkan alur makro 

InceptionV3 mencakup lima modul Inception A, grid size reduction pertama, empat modul Inception B, grid size 

reduction kedua, dua modul Inception C, serta sebuah auxiliary classifier[26]. Diagram tersebut bersifat ilustratif 

dan tidak menampilkan stem network serta detail internal seperti factorized convolution (1×7, 7×1), meskipun 

seluruh komponen tersebut tetap aktif dalam implementasi model pretrained PyTorch yang digunakan.Dalam 

penelitian ini, InceptionV3 diinisialisasi menggunakan bobot ImageNet dan dimodifikasi pada bagian classifier 

akhir menjadi Dropout → Linear (2048→1) agar menghasilkan satu logit sesuai kebutuhan klasifikasi biner[22]. 

Auxiliary classifier (AuxLogits) juga disesuaikan menjadi keluaran tunggal. Walaupun diagram arsitektur 

menampilkan softmax, implementasi ini menggunakan BCEWithLogitsLoss yang lebih stabil untuk tugas biner, 

sehingga softmax tidak digunakan secara eksplisit. Modifikasi ini memungkinkan model mempertahankan 

kemampuan representasi fitur mendalam sembari menyesuaikannya dengan karakteristik tekstur retakan beton. 
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2.4.2 Arsitektur MobileNetV2 

MobileNetV2 dirancang sebagai arsitektur CNN yang sangat efisien melalui pemanfaatan depthwise 

separable convolution dan inverted residual block. Depthwise separable convolution memecah konvolusi standar 

menjadi dua tahap, yaitu depthwise convolution untuk memproses setiap kanal secara terpisah dan pointwise 

convolution (1×1) untuk menggabungkan kembali hasilnya[28]. Pemisahan ini menurunkan biaya komputasi 

secara signifikan dibandingkan konvolusi standar dengan kompleksitas 

Coststd = 𝐻 𝑊 𝐾2 𝐶in 𝐶out, (3) 

Pada persamaan (3), H dan W merepresentasikan tinggi dan lebar feature map, sedangkan K menunjukkan ukuran 

kernel konvolusi yang digunakan. Nilai Cinmerupakan jumlah kanal masukan, dan Cout merupakan jumlah kanal 

keluaran yang dihasilkan oleh lapisan konvolusi. Susunan variabel ini menggambarkan total beban komputasi yang 

harus dihitung untuk setiap lokasi piksel pada satu lapisan konvolusi.[28], biaya ini berkurang menjadi 

                  Cost𝑠𝑒𝑝 = 𝐻 .𝑊(𝐾2𝐶in + 𝐶in𝐶out)  (4) 

Pada Persamaan, variabel H dan W menyatakan tinggi dan lebar feature map, sedangkan K adalah ukuran kernel 

konvolusi. Nilai Cin merepresentasikan jumlah kanal masukan, dan Cout menunjukkan jumlah kanal keluaran. 

Rumus ini menunjukkan bahwa beban komputasi terdiri dari konvolusi per kanal sebesar K2Cin dan konvolusi 1×1 

sebesar CinCout.[28]. 

 

Gambar 3. Diagram Arsitektur MobileNetV2 

Struktur makro MobileNetV2 yang digunakan dalam penelitian ini ditunjukkan pada Gambar 3, yang 

terdiri atas lapisan konvolusi awal, diikuti beberapa inverted residual block, dan diakhiri dengan ekstraksi fitur 

melalui global average pooling sehingga menghasilkan feature map berukuran 7×7×1280[19]. Diagram tersebut 

menampilkan alur blok secara konseptual, sedangkan implementasi pada penelitian ini mengikuti konfigurasi 

bawaan PyTorch, termasuk tahap ekspansi kanal, depthwise convolution, dan residual connection ketika dimensi 

fitur sesuai[19].Dalam penelitian ini, MobileNetV2 dimuat menggunakan bobot pretrained ImageNet. Lapisan 

classifier asli dihapus dan diganti dengan Dropout → Linear (in_features → 1) sehingga menghasilkan satu nilai 

logit untuk klasifikasi biner crack dan no-crack. Sesuai kode eksperimen, sebagian parameter awal dibekukan dan 

hanya beberapa lapisan akhir yang di-unfreeze untuk fine-tuning, sehingga model tetap mempertahankan fitur 

pretrained sambil beradaptasi terhadap karakteristik tekstur retakan beton[29]. 

2.5 Desain Eksperimen untuk Penentuan Hyperparamater 

Proses tuning hyperparameter dilakukan secara sistematis menggunakan pendekatan grid search bertahap 

pada arsitektur MobileNetV2 dan InceptionV3. Setiap konfigurasi dievaluasi menggunakan nilai akurasi yang 

dihasilkan dari proses pengujian model, sesuai dengan implementasi pada kode eksperimen. Variasi 

hyperparameter yang diujikan ditampilkan pada Tabel 2. 

Tabel 2. Konfigurasi Hyperparameter pada Eksperimen. 

Parameter MobilenetV2 InceptionV3 

Learning rate 0.0001-0.001 0.0001-0.001 

Drop Out 0.1-1 0.1-1 

Batch Size 4,8,16,32,48,64,128 4,8,16,32,48,64,128 

Epoch 10,20,30,40,50 10,20,30,40,50 
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Hyperparameter yang diuji mencakup aspek optimisasi, regularisasi, jadwal pelatihan, dan konfigurasi 

fine-tuning. Seluruh eksperimen dijalankan pada laptop dengan AMD Ryzen 5 6000 series, GPU RTX 3050, 

menggunakan library NumPy, Pandas, PyTorch CUDA beserta torchvision, scikit-learn, PIL, Matplotlib, serta 

OpenPyXL pada lingkungan Python 3.11 melalui VSCode 1.97. Pada tahap fine-tuning, backbone awal dibekukan 

lalu beberapa layer dibuka sesuai fine tune params, sehingga kedalaman fine-tuning menjadi hyperparameter 

penting [19]. Optimizer Adam diperlakukan sebagai hyperparameter karena memanfaatkan momen pertama dan 

kedua untuk konvergensi yang stabil [26]. Tuning dilakukan secara progresif, dimulai dari pemilihan learning rate 

0.0001–0.001, kemudian pengujian dropout rate 0.1–1.0 [24], diikuti variasi batch size 4–128, dan akhirnya jumlah 

epoch 10–50 dengan pemilihan bobot terbaik berdasarkan validation loss. Parameter pos weight pada 

BCEWithLogits juga diuji untuk menangani ketidakseimbangan kelas [29], sementara steps per epoch digunakan 

untuk menjaga konsistensi iterasi antar konfigurasi. Seluruh kombinasi dievaluasi menggunakan cross validation, 

dan konfigurasi terbaik dipilih berdasarkan rata-rata akurasi tertinggi dari lima fold tanpa variasi performa ekstrem 

[24]. Pendekatan bertahap ini memastikan proses optimasi lebih efisien dan terarah. 

2.6 Evaluasi Model dengan Cross Validation 

Penelitian ini menggunakan Stratified 5-Fold Cross-Validation untuk memastikan evaluasi yang stabil, 

dengan pembagian data ke dalam lima fold yang mempertahankan proporsi kelas Crack dan No Crack[24]. 

Stratifikasi dilakukan sebelum pra-pemrosesan, sehingga setiap fold memiliki distribusi kelas serupa dengan 

dataset asli. Setiap fold bergantian menjadi data validasi, sementara empat fold lainnya menjalani training lengkap 

termasuk resize, normalisasi, dan augmentasi, sehingga evaluasi dilakukan secara independen dan konsisten. 

Pendekatan ini mengurangi bias akibat ketidakseimbangan kelas dan memberikan gambaran performa model yang 

lebih dapat digeneralisasikan. Kinerja model dievaluasi melalui confusion matrix yang mencakup empat kategori 

prediksi yaitu TP (True Crack), TN (True No-Crack), FP (False Crack), dan FN (False No-Crack), dengan FN 

sebagai kesalahan paling kritis karena berisiko menyebabkan retakan tidak terdeteksi. Berdasarkan nilai TP, TN, 

FP, dan FN tersebut, metrik evaluasi kemudian dihitung menggunakan rumus berikut. 

[Accuracy = [
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
] 

 

(5) 

[Precision = [
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
] 

 

(6) 

[Recall = [
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
] 

 

(7) 

[F1-Score = 2 × [
Precision × Recall

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + Recall
] 

(8) 

Persamaan (5) digunakan untuk mengukur ketepatan keseluruhan model, persamaan (6) menunjukkan 

ketepatan model dalam memprediksi kelas crack, persamaan (7) menunjukkan kemampuan model menemukan 

seluruh citra retakan, dan persamaan (8) memberikan penilaian seimbang antara precision dan recall. Rata-rata 

nilai dari lima fold digunakan sebagai hasil akhir, dan durasi pelatihan setiap konfigurasi turut dicatat untuk menilai 

efisiensi komputasi. Seluruh hasil disimpan otomatis dalam file Excel untuk memudahkan analisis performa secara 

konsisten pada setiap konfigurasi. 

3. HASIL DAN PEMBAHASAN 

3.1     Analisis Karakteristik Dataset 

Analisis terhadap dataset NYA-Crack-DATA menunjukkan bahwa variasi visual pada citra memiliki 

pengaruh signifikan terhadap performa model. Dataset ini terdiri dari 2167 citra Crack dan 2859 citra No Crack, 

di mana perbedaan jumlah tersebut berpotensi menimbulkan bias prediksi sehingga diperlukan strategi seperti 

augmentasi dan validasi yang seimbang. Variasi tekstur permukaan beton serta perbedaan pencahayaan menuntut 

model untuk mengenali pola retakan meskipun citra dipengaruhi faktor eksternal. Beberapa citra dengan latar 

belakang kompleks atau tekstur mirip retakan pada kelas No Crack juga memperlihatkan tantangan bagi model 

dalam melakukan generalisasi. Secara keseluruhan, model mampu mengenali pola retakan pada sebagian besar 

kondisi visual, tetapi performanya menurun pada citra dengan noise tinggi atau kontras rendah. Kondisi ini 

menunjukkan bahwa meskipun dataset cukup representatif, aspek seperti kompleksitas tekstur dan variasi kualitas 

citra tetap menjadi tantangan yang perlu diperhatikan selama pelatihan. 

3.2      Analisis Hasil Pra-pemrosesan dan Augmentasi Data 
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Hasil pra-pemrosesan pada Tabel 3 menunjukkan bahwa proses resize berhasil menghasilkan citra dengan 

ukuran seragam tanpa menyebabkan distorsi pada struktur retakan, sehingga proporsi objek tetap konsisten saat 

masuk ke model. Citra yang telah dinormalisasi juga memperlihatkan distribusi intensitas piksel yang lebih stabil 

dan merata dibandingkan citra asli yang memiliki variasi pencahayaan tidak seragam. Pada tahap augmentasi, 

rotasi dan affine transform memberikan variasi sudut dan posisi secara halus tanpa mengubah pola retakan utama, 

sementara color shift menambah variasi pencahayaan yang tetap realistis. Pembalikan horizontal dan vertikal juga 

menambah keragaman orientasi citra tanpa mengubah konteks tekstur beton. Secara keseluruhan, tahapan pra-

pemrosesan berhasil menstandarkan citra dengan baik, sedangkan augmentasi memperkaya variasi dataset tanpa 

menghilangkan informasi penting, sehingga memberikan dasar yang lebih kuat bagi model dalam mempelajari 

pola retakan pada berbagai kondisi. 

Tabel 3. Gambar Hasil Pra-pemrosesan dan Augmentasi 

 
Original Image 

 
Resize 224×224 

(MobileNetV2) 

 
Resize 299×299 

(InceptionV3) 

 
Rotation 20° 

 
Affine Transform 

 
Color Shift 

 
Horizontal Flip 

 
Vertical Flip 

3.3    Hasil Eksperimen Hyperparamater 

3.3.1     Learning rate  

Pengujian learning rate dari 0.0001 hingga 0.001 pada dua arsitektur, yaitu MobileNetV2 dan 

InceptionV3, dilakukan untuk mengidentifikasi konfigurasi paling stabil dan akurat. Seluruh hyperparameter lain 

dipertahankan pada nilai default agar pengaruh learning rate dapat diamati secara spesifik. Performa masing-

masing konfigurasi ditampilkan pada Gambar 4, yang memperlihatkan bagaimana perubahan kecil pada learning 

rate berdampak langsung pada pola konvergensi dan stabilitas pembelajaran.Pada MobileNetV2, learning rate 

0.0003 memberikan performa tertinggi dengan akurasi 0.956, precision 0.945, recall 0.979, dan F1-score 0.962. 

Nilai ini menunjukkan keseimbangan optimal antara kecepatan pembaruan bobot dan stabilitas gradien. Ketika 

learning rate diturunkan ke 0.0001, peningkatan akurasi berjalan lambat karena pembaruan bobot terlalu kecil. 

Sebaliknya, penggunaan learning rate lebih besar dari 0.0003 menyebabkan performa menurun akibat gradien 

yang berosilasi dan sulit menemukan titik minimum loss. Waktu pelatihan yang jauh lebih singkat, yaitu rata-rata 

4,5 menit, memperlihatkan bahwa arsitektur ini sangat efisien untuk tugas deteksi retakan.InceptionV3 

menunjukkan kecenderungan berbeda. Model ini mencapai hasil terbaik pada learning rate 0.0005 dengan akurasi 

0.937, precision 0.945, recall 0.944, dan F1-score 0.944. Karena arsitektur InceptionV3 lebih dalam, nilai learning 

rate kecil seperti 0.0001–0.0002 menghasilkan proses belajar yang lambat, sedangkan learning rate di atas 0.0005 

memicu fluktuasi akurasi dan ketidakstabilan akibat pembaruan bobot yang terlalu agresif. Waktu pelatihan rata-

rata 10–11 menit per konfigurasi mencerminkan kompleksitas arsitektur yang tinggi. 

 

Gambar 4. Grafik Perbandingan Akurasi MobileNetV2 dan InceptionV3 terhadap Learning Rate. 

Analisis ANOVA (Analysis of Variance) terhadap akurasi menunjukkan bahwa perbedaan rerata antara 

kedua model tidak terlalu besar, meskipun MobileNetV2 cenderung menghasilkan akurasi lebih tinggi pada 

sebagian besar nilai learning rate. Nilai F memang tinggi, tetapi pola data tidak memperlihatkan perbedaan yang 

mencolok, sehingga variasi akurasi pada rentang 0.0001–0.001 relatif serupa tanpa dominasi ekstrem dari salah 

satu arsitektur. Berbeda dengan akurasi, hasil pengujian waktu komputasi menunjukkan kontras yang jauh lebih 

jelas. MobileNetV2 membutuhkan rata-rata 4.5 menit per konfigurasi, sedangkan InceptionV3 memerlukan lebih 

dari 11 menit, menghasilkan nilai F yang sangat besar dan menegaskan perbedaan komputasi yang signifikan. 

Variansi waktu pada InceptionV3 juga lebih tinggi, menunjukkan kebutuhan sumber daya yang lebih besar dan 

proses pelatihan yang kurang stabil dibandingkan MobileNetV2. Secara keseluruhan, kompleksitas arsitektur 

memengaruhi sensitivitas terhadap learning rate: MobileNetV2 yang ringan stabil pada learning rate kecil, 

sedangkan InceptionV3 memerlukan nilai lebih besar agar propagasi gradien lebih efektif. Berdasarkan evaluasi 
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akurasi dan waktu komputasi, learning rate terbaik untuk tahap pengujian dropout selanjutnya adalah 0.0003 untuk 

MobileNetV2 dan 0.0005 untuk InceptionV3. 

3.3.2 Drop Out 

Pada tahap ini, pengujian dropout dilakukan menggunakan learning rate terbaik dari tahap sebelumnya, 

yaitu 0.0003 untuk MobileNetV2 dan 0.0005 untuk InceptionV3, dengan hyperparameter lainnya dipertahankan 

pada nilai default. Evaluasi difokuskan pada akurasi sebagai indikator utama, disertai precision, recall, dan F1-

score sebagai metrik pendukung. Hasil pada Gambar 5 menunjukkan bahwa MobileNetV2 mencapai performa 

terbaik pada dropout 0.2 dengan akurasi 0.955, precision 0.948, recall 0.974, dan F1-score 0.961. Dropout rendah 

(0.1–0.2) membantu menjaga stabilitas pembelajaran, sedangkan nilai di atas 0.3 mulai menurunkan performa dan 

menjadi sangat buruk pada dropout ekstrem 0.8–1.0. Temuan ini menunjukkan bahwa arsitektur ringan seperti 

MobileNetV2 tidak membutuhkan regularisasi besar dan sensitif terhadap dropout agresif. Sebaliknya, 

InceptionV3 mencapai performa terbaik pada dropout 0.8 dengan akurasi 0.937, precision 0.928, recall 0.965, dan 

F1-score 0.946. Kompleksitas arsitektur yang lebih besar menyebabkan model rentan overfitting pada dropout 

rendah, sehingga dropout tinggi membantu meningkatkan generalisasi. Pada rentang 0.1–0.3, selisih besar antara 

akurasi training dan validasi menjadi indikator overfitting. Dari sisi efisiensi, MobileNetV2 membutuhkan sekitar 

2 menit per epoch, jauh lebih cepat dibandingkan InceptionV3 yang memerlukan 4–5 menit. Perbedaan komputasi 

tersebut sejalan dengan kompleksitas arsitektur, tetapi pola efektivitas dropout tetap konsisten: MobileNetV2 

optimal pada dropout rendah, sedangkan InceptionV3 membutuhkan dropout tinggi. 

Hasil tersebut kemudian diperkuat melalui analisis statistik ANOVA (Analysis of Variance) yang 

diterapkan pada nilai akurasi dan waktu komputasi dari seluruh variasi dropout. Pengujian ini menunjukkan bahwa 

penggunaan dropout memiliki pengaruh signifikan terhadap perubahan akurasi pada kedua model karena nilai p-

value berada jauh di bawah ambang 0.05. Kondisi tersebut menegaskan bahwa perbedaan performa yang muncul 

tidak bersifat acak, melainkan dipengaruhi langsung oleh variasi tingkat dropout. Pada MobileNetV2, kelompok 

dropout rendah 0.1–0.2 membentuk kluster akurasi yang berbeda secara signifikan dibandingkan kelompok 

dropout tinggi 0.6–1.0, sehingga memperlihatkan sensitivitas arsitektur ringan terhadap regularisasi yang terlalu 

besar. Sementara itu, pada InceptionV3, dropout tinggi memberikan peningkatan stabil yang tidak muncul pada 

kelompok dropout rendah, menunjukkan kebutuhan regularisasi yang lebih kuat pada arsitektur yang 

kompleks.Analisis yang sama juga menunjukkan bahwa waktu komputasi tidak mengalami perbedaan signifikan 

antar variasi dropout, mengindikasikan bahwa perubahan durasi pelatihan lebih dipengaruhi oleh karakteristik 

arsitektur masing-masing daripada tingkat dropout. Berdasarkan seluruh rangkaian eksperimen, baik dari sisi 

performa maupun validitas statistik, konfigurasi terbaik ditentukan berdasarkan akurasi tertinggi untuk masing-

masing model. Oleh karena itu, dropout 0.2 dipilih sebagai konfigurasi optimal untuk MobileNetV2, sedangkan 

dropout 0.8 ditetapkan sebagai konfigurasi terbaik untuk InceptionV3. 

 

Gambar 5. Grafik Perbandingan Akurasi MobileNetV2 dan InceptionV3 terhadap Drop Out 

3.3.3 Batch Size 

Tahap ini menguji pengaruh variasi batch size terhadap performa MobileNetV2 dan InceptionV3 dengan 

menggunakan konfigurasi learning rate dan dropout terbaik dari eksperimen sebelumnya, yaitu 0.0003 dan dropout 

0.2 untuk MobileNetV2 serta 0.0005 dan dropout 0.8 untuk InceptionV3. Visualisasi hasil pengujian ditampilkan 

pada Gambar 6. Variasi batch size diberikan pada rentang 4 hingga 128 yang memengaruhi stabilitas gradien dan 

pola pembaruan bobot selama proses pelatihan. Pada batch size kecil seperti 4 dan 8, kedua model menunjukkan 

fluktuasi akurasi akibat gradien yang tidak stabil, dengan efek yang lebih terasa pada InceptionV3 karena 

arsitekturnya yang kompleks. Ketika batch size dinaikkan pada rentang menengah yaitu 16 dan 32, pola pelatihan 

menjadi lebih stabil karena lebih banyak sampel yang berkontribusi dalam proses propagasi balik. Konsistensi 

gradien meningkat sehingga nilai akurasi bergerak lebih teratur, meskipun belum mencapai performa 

optimum.Performa terbaik tercapai pada batch size 128, di mana MobileNetV2 memperoleh akurasi 0.980 dan 

InceptionV3 mencapai 0.955.Nilai ini menunjukkan bahwa batch besar memberikan stabilitas gradien yang lebih 

efektif, memungkinkan model mengenali pola tekstur retakan secara lebih seragam pada setiap pembaruan bobot. 

Walaupun batch size besar meningkatkan waktu pemrosesan per iterasi, efisiensi total pelatihan tetap meningkat 

karena model lebih cepat mencapai konvergensi dalam jumlah epoch yang lebih sedikit.MobileNetV2 tetap 
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menunjukkan keunggulan efisiensi waktu, sejalan dengan arsitekturnya yang lebih ringan dan jumlah 

parameternya yang lebih sedikit. 

 

Gambar 6. Grafik Perbandingan Akurasi MobileNetV2 dan InceptionV3 terhadap Batch Size 

Hasil tersebut kemudian diperkuat melalui analisis statistik ANOVA (Analysis of Variance) yang 

diterapkan pada akurasi kedua model. Analisis ini menunjukkan bahwa perbedaan rerata performa tidak signifikan 

secara statistik, sehingga variasi akurasi pada seluruh konfigurasi lebih dipengaruhi oleh stabilitas gradien yang 

meningkat pada batch besar dibandingkan oleh perbedaan arsitektural antara MobileNetV2 dan InceptionV3. 

Kondisi ini mengindikasikan bahwa batch size 128 memberikan dampak peningkatan yang relatif seimbang pada 

kedua CNN.Dari sisi efisiensi, MobileNetV2 menunjukkan waktu komputasi yang jauh lebih rendah pada seluruh 

variasi batch size, mulai dari 0.90 detik pada batch size 4 hingga 14.31 detik pada batch size 128. Sementara itu, 

InceptionV3 membutuhkan waktu yang lebih lama, yaitu 2.60 detik pada batch size 4 dan meningkat hingga 30.27 

detik pada batch size 128. Meskipun perbedaan waktu komputasi tampak sangat besar, hasil ANOVA menunjukkan 

bahwa rerata kedua kelompok tetap tidak berbeda signifikan, menandakan bahwa varian waktu terutama 

dipengaruhi oleh kompleksitas internal InceptionV3.Hal ini memperlihatkan bahwa peningkatan batch size 

memengaruhi kedua model dengan arah yang sama, tetapi InceptionV3 menanggung beban komputasi yang lebih 

besar akibat kedalaman arsitekturnya.Berdasarkan seluruh hasil tersebut, batch size 128 dipilih sebagai konfigurasi 

optimal karena memberikan keseimbangan terbaik antara akurasi dan stabilitas pembelajaran. MobileNetV2 

memperoleh manfaat paling besar dari penggunaan batch besar tanpa mengorbankan efisiensi, sedangkan 

InceptionV3 tetap mengalami peningkatan performa meskipun terbebani oleh waktu komputasi yang lebih tinggi. 

Konfigurasi ini kemudian digunakan pada tahap pengujian jumlah epoch untuk memastikan konsistensi performa 

pada proses pelatihan berikutnya. 

3.3.4 Epoch 

Pada tahap ini, kedua model dilatih menggunakan kombinasi hyperparameter terbaik dari eksperimen sebelumnya, 

yaitu learning rate 0.0003 dan dropout 0.2 untuk MobileNetV2, serta learning rate 0.0005 dan dropout 0.8 untuk 

InceptionV3, dengan batch size 128 untuk keduanya. Tujuan pengujian ini adalah menentukan titik konvergensi 

sekaligus mengidentifikasi tanda underfitting atau overfitting. Pola pelatihan terhadap variasi epoch dapat dilihat 

pada Gambar 7, yang juga menunjukkan stabilitas gradien dan kapasitas masing-masing model dalam 

mengekstraksi fitur penting dari citra retakan beton.Secara umum, kedua model menunjukkan peningkatan 

performa seiring bertambahnya epoch sebelum akhirnya mencapai titik optimum dan stagnasi. Pada InceptionV3, 

akurasi meningkat dari 0,955 pada epoch ke-10 menjadi 0,966 pada epoch ke-40, dengan F1-score tertinggi 0,970, 

yang menunjukkan bahwa arsitektur lebih dalam memerlukan waktu lebih lama untuk stabilisasi gradien dan 

pembelajaran fitur secara menyeluruh.  

 

Gambar 7. Grafik Perbandingan Akurasi MobileNetV2 dan InceptionV3 terhadap Epoch 
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Analisis ANOVA terhadap akurasi menunjukkan bahwa perbedaan performa kedua model nyata dan 

konsisten, mengindikasikan keunggulan MobileNetV2 dalam menangkap fitur penting. Seiring penambahan epoch 

hingga 50, peningkatan performa tidak lagi signifikan dan mulai muncul tanda overfitting ringan, sementara waktu 

pelatihan InceptionV3 meningkat drastis dari sekitar 21 menjadi hampir 97 menit sehingga tambahan epoch tidak 

memberikan manfaat yang sebanding. MobileNetV2 menunjukkan tren peningkatan lebih cepat dan stabil, dengan 

akurasi naik dari 0.975 pada epoch ke-10 menjadi 0.981 pada epoch ke-30 serta F1-score tertinggi 0.984. Setelah 

epoch ke-30, performa kedua model cenderung stagnan, menandakan titik jenuh pembelajaran, sekaligus 

menunjukkan bahwa arsitektur ringan mencapai konvergensi lebih awal. Waktu pelatihan meningkat hingga lebih 

dari 70 menit pada epoch ke-50, menegaskan bahwa penambahan epoch tidak lagi efisien. Analisis ANOVA 

terhadap durasi komputasi menunjukkan bahwa meskipun MobileNetV2 lebih cepat, variasi waktu antar model 

tidak signifikan secara statistik sehingga memperlihatkan stabilitas proses pelatihan. Dari sisi efisiensi, 

MobileNetV2 tetap unggul dengan performa tinggi dan waktu pelatihan jauh lebih singkat dibandingkan 

InceptionV3. Berdasarkan keseluruhan evaluasi, epoch optimal ditetapkan pada 30 untuk MobileNetV2 dan 40 

untuk InceptionV3 karena memberikan keseimbangan terbaik antara akurasi, F1-score, dan efisiensi komputasi, 

sehingga digunakan sebagai konfigurasi akhir dalam tahap evaluasi model. 

3.4     Analisis Perbandingan Model  

Pada penelitian ini, proses tuning hyperparameter dilakukan secara bertahap untuk menentukan 

konfigurasi pelatihan terbaik bagi kedua model, sebagaimana ditunjukkan pada Tabel 4. Pengujian dilakukan pada 

rentang learning rate 0.0001–0.001, dropout 0.1–1.0, batch size 4–128, dan epoch 10–50 untuk memastikan bahwa 

setiap kombinasi hyperparameter dievaluasi secara komprehensif. Seluruh nilai performa yang dianalisis 

merupakan rata-rata dari lima fold Stratified 5-Fold Cross-Validation sebagaimana dijelaskan pada metodologi, 

sehingga hasil yang diperoleh mencerminkan stabilitas performa pada distribusi data yang berbeda. Berdasarkan 

eksplorasi bertahap tersebut, MobileNetV2 mencapai stabilitas pelatihan terbaik pada learning rate 0.0003, dropout 

0.2, batch size 128, dan 30 epoch, sesuai konfigurasi optimal pada Tabel 4. Sementara itu, InceptionV3 

menunjukkan performa paling optimal pada learning rate 0.0005, dropout 0.8, batch size 128, dan 40 epoch, di 

mana arsitektur yang lebih dalam membuat model lebih sensitif terhadap perubahan hyperparameter sehingga 

memerlukan regularisasi yang lebih tinggi untuk mencegah overfitting. Perbedaan kebutuhan konfigurasi ini 

menegaskan bahwa karakteristik arsitektur sangat memengaruhi respons model terhadap pengaturan 

hyperparameter yang diuji. 

Pengaruh langsung dari pengaturan tersebut terlihat pada evaluasi kinerja pada Tabel 5. MobileNetV2 

memberikan performa terbaik dengan akurasi 0.981, presisi 0.979, recall 0.988, dan F1-score 0.984. Nilai recall 

yang tinggi menunjukkan bahwa model ini mampu mengidentifikasi hampir seluruh citra retakan, sehingga risiko 

false negative dapat diminimalkan, sebuah aspek penting dalam pemantauan struktur. Selain itu, waktu pelatihan 

yang lebih singkat sekitar 70 menit mencerminkan efisiensi komputasi yang unggul dan konsisten dengan karakter 

arsitektur yang ringan. InceptionV3 menghasilkan akurasi 0.966, presisi 0.962, recall 0.978, dan F1-score 0.970. 

Walaupun performanya tetap kompetitif, model ini lebih rentan terhadap pola tekstur permukaan yang menyerupai 

retakan sehingga menghasilkan false positive maupun false negative yang lebih besar, ditambah waktu pelatihan 

yang lebih lama sekitar 97 menit. Perbedaan performa ini juga sejalan dengan karakteristik arsitektur, di mana 

struktur MobileNetV2 yang lebih ringan cenderung memberikan respons gradien yang stabil pada dataset dengan 

karakter visual homogen, sedangkan InceptionV3 memerlukan kompleksitas visual yang lebih tinggi untuk 

mencapai performa optimal. Temuan ini turut selaras dengan beberapa penelitian terdahulu. Performa 

MobileNetV2 yang stabil dan efisien konsisten dengan laporan Nguyen et al. (2024) yang melaporkan bahwa 

model ringan bekerja optimal pada dataset dengan variasi tekstur yang tidak terlalu kompleks[15]. Adapun 

perbedaan hasil dengan Arafin et al. (2024), yang menempatkan InceptionV3 sebagai model unggul, menegaskan 

bahwa efektivitas arsitektur CNN sangat dipengaruhi oleh tingkat kompleksitas tekstur dataset yang 

digunakan[12]. Secara keseluruhan, MobileNetV2 menunjukkan respons pelatihan yang lebih stabil, waktu 

komputasi yang lebih efisien, serta akurasi validasi yang lebih tinggi dibandingkan InceptionV3, sehingga lebih 

sesuai dengan karakter dataset retakan yang relatif homogen. 

Tabel 4. Performa Hyperparameter Terbaik dari Kedua Model CNN 

Model Learning Rate Drop Out Batch Size Epoch 

MobileNetV2 0.0003 0.2 128 30 

InceptionV3 0.0005 0.8 128 40 

Tabel 5. Perbandingan Kinerja Akhir Model MobileNetV2 dan InceptionV3 

Model Akurasi Presisi Recall F1-Score Waktu 

Pelatihan(menit) 

MobileNetV2 0.981 0.979 0.988 0.984 ≈ 70 

InceptionV3 0.966 0.962 0.978 0.970 ≈ 97 

Visualisasi pada Tabel 6 menunjukkan perbedaan karakteristik prediksi antara InceptionV3 dan 

MobileNetV2 berdasarkan contoh klasifikasi benar dan salah. Pada bagian InceptionV3 Klasifikasi Benar, model 
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mengidentifikasi retakan dengan tepat ketika citra menampilkan pola retakan yang jelas dan memiliki kontras kuat. 

Namun pada bagian InceptionV3 Klasifikasi Salah, citra yang memiliki tekstur beton kasar atau noise yang tinggi 

menyebabkan model memberikan aktivasi yang menyebar sehingga model melakukan false positive maupun false 

negative. Kondisi ini menunjukkan bahwa InceptionV3 memiliki sensitivitas tinggi terhadap variasi permukaan 

beton. Sebaliknya, pada bagian MobileNetV2 Klasifikasi Benar, model menyoroti area retakan secara lebih 

terfokus dan konsisten, bahkan ketika citra memiliki retakan tipis atau kontras rendah. Pada bagian MobileNetV2 

Klasifikasi Salah, jumlah kesalahan yang lebih sedikit menunjukkan bahwa kualitas tekstur yang buruk, 

pencahayaan rendah, atau permukaan yang sangat tidak rata menjadi faktor utama terjadinya kekeliruan. Aktivasi 

yang salah juga muncul dengan cakupan yang lebih kecil dibandingkan InceptionV3. Secara keseluruhan, 

visualisasi tersebut menguatkan hasil evaluasi kuantitatif, di mana MobileNetV2 memberikan prediksi yang lebih 

stabil dan lebih tahan terhadap variasi tekstur. Mekanisme ekstraksi fitur lokal yang lebih efektif pada 

MobileNetV2 menjadikannya model yang lebih sesuai untuk sistem deteksi retakan, terutama untuk perangkat 

dengan keterbatasan komputasi seperti drone inspeksi atau sistem edge-processing berbasis Jetson Nano. Temuan 

ini juga menunjukkan bahwa MobileNetV2 memiliki potensi yang baik untuk digunakan pada aplikasi inspeksi 

lapangan secara real-time. Selain itu, konsistensi aktivasi pada area retakan menegaskan bahwa model ini mampu 

mempertahankan kinerja meskipun dihadapkan pada kondisi citra yang lebih menantang. 

Tabel 6. Visualisasi Klasifikasi Benar dan Salah dari InceptionV3 dan MobileNetV2 

InceptionV3: Klasifikasi Benar InceptionV3: Klasifikasi Salah 

 
Asli: Crack 

Predict: Crack 

 
Asli: Crack 

Predict: Crack 

 
Asli: Crack 

Predict: Crack 

 
Asli: Crack 

Predict: Crack 

 
Asli: Crack 

Predict: No 

Crack 

 
Asli: Crack 

Predict: No 

Crack 

 
Asli: Crack 

Predict: No 

Crack 

 
Asli: Crack 

Predict: No 

Crack 

MobileNetV2: Klasifikasi Benar MobileNetV2: Klasifikasi Salah 

 
Asli: Crack 

Predict: Crack 

 
Asli: Crack 

Predict: Crack 

 
Asli: Crack 

Predict: Crack 

 
Asli: Crack 

Predict: Crack 

 
Asli: Crack 

Predict: No 

Crack 

 
Asli: No Crack 

Predict: Crack 

 
Asli: No Crack 

Predict: Crack 

 
Asli: No Crack 

Predict: Crack 

3.5      Pembahasan 

Respons kedua model terhadap perubahan hyperparameter memperlihatkan bahwa karakteristik arsitektur 

berperan besar dalam menentukan stabilitas pembelajaran. MobileNetV2 yang berbasis inverted residual dan 

depthwise separable convolution menunjukkan perilaku yang lebih stabil di hampir seluruh konfigurasi, terutama 

karena desainnya yang ringan membuat model ini tidak terlalu sensitif terhadap variasi regularisasi maupun ukuran 

batch. Sementara itu, InceptionV3 justru lebih mudah mengalami fluktuasi performa akibat kedalaman jaringan 

dan jumlah parameternya yang jauh lebih besar, sehingga membutuhkan pengaturan hyperparameter yang lebih 

hati-hati.Perbedaan kebutuhan dropout dan epoch pada kedua model memperlihatkan bagaimana kompleksitas 

arsitektur memengaruhi kecenderungan overfitting. Model yang ringan dapat bekerja baik meskipun diberikan 

regularisasi minimal, sedangkan model yang lebih dalam justru memerlukan keseimbangan antara kapasitas 

jaringan dan tingkat regularisasi agar tidak kehilangan kemampuan ekstraksi fitur. Temuan ini menjelaskan 

mengapa performa kedua model cenderung berbeda meskipun diuji pada dataset yang sama dan rentang parameter 

yang identik.Analisis statistik melalui ANOVA juga menunjukkan bahwa beberapa hyperparameter memberikan 

pengaruh lebih signifikan dibanding lainnya, khususnya yang berkaitan dengan mekanisme regularisasi dan durasi 

pelatihan. Hal ini mengonfirmasi bahwa konfigurasi optimal tidak hanya ditentukan oleh besarnya parameter, 

tetapi oleh kecocokannya dengan struktur internal model. Secara keseluruhan, hasil pembelajaran memperkuat 

bahwa model yang lebih efisien secara arsitektural dapat memberikan generalisasi lebih baik dan komputasi lebih 

ringan pada dataset dengan karakter visual yang relatif homogen, seperti citra permukaan beton. 

4. KESIMPULAN 

Penelitian ini dilakukan untuk menjawab kebutuhan akan sistem pendeteksi retakan beton yang akurat dan efisien, 

mengingat metode inspeksi visual manual masih rentan terhadap subjektivitas dan kesalahan identifikasi. Melalui 

serangkaian eksperimen tuning hyperparameter menggunakan Stratified 5-Fold Cross-Validation, penelitian ini 
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berhasil mengidentifikasi konfigurasi pelatihan yang paling stabil bagi dua arsitektur CNN, yaitu MobileNetV2 dan 

InceptionV3. Temuan utama menunjukkan bahwa MobileNetV2 memberikan performa paling konsisten dalam 

mempelajari pola visual retakan, termasuk pada citra dengan tekstur beton yang kompleks maupun kontras rendah, 

sehingga model ini menjadi pilihan paling efektif untuk sistem deteksi retakan otomatis. Analisis ANOVA 

memperlihatkan bahwa tidak semua hyperparameter memberikan kontribusi yang sama terhadap performa akhir. 

Dropout dan jumlah epoch memiliki pengaruh signifikan terhadap kualitas pembelajaran, sedangkan learning rate 

dan batch size tidak menunjukkan perbedaan yang berarti karena stabilitas gradien bawaan MobileNetV2. Selain 

itu, ANOVA pada waktu komputasi menegaskan bahwa perbedaan kecepatan antara kedua model bukan hanya 

akibat variasi hyperparameter, melainkan karakter arsitektural yang lebih ringan sehingga MobileNetV2 

consistently lebih efisien. Implikasi praktis dari temuan ini adalah bahwa arsitektur ringan seperti MobileNetV2 

memiliki potensi besar untuk diterapkan pada perangkat edge berdaya rendah misalnya Jetson Nano, Raspberry 

Pi, atau modul komputasi serupa yang membutuhkan akurasi tinggi dengan konsumsi komputasi minimal.Untuk 

pengembangan selanjutnya, penelitian perlu diperluas dengan pengujian pada citra lapangan untuk memastikan 

ketangguhan model terhadap variasi kondisi visual nyata, seperti pencahayaan tidak merata, tekstur permukaan 

yang tidak homogen, serta gangguan lingkungan. Selain itu, studi komparatif dengan model yang lebih modern 

seperti EfficientNet atau Vision Transformer penting dilakukan untuk mengevaluasi potensi peningkatan akurasi 

dan efisiensi. Dengan penerapan teknik optimasi seperti pruning dan kuantisasi, sistem ini berpotensi 

dikembangkan menjadi solusi siap pakai yang dapat berjalan secara optimal pada perangkat bergerak atau edge 

device, sehingga benar-benar memberikan dampak praktis dalam inspeksi struktur beton.   
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