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Abstract−The rapid growth of data in the era of Big Data demands efficient and scalable algorithms to handle large datasets. 

Sorting, as a fundamental operation in data processing, plays a crucial role in various computational tasks. This study focuses 

on the performance analysis of the Parallel Merge Sort algorithm using the Message Passing Interface (MPI) to accelerate 
sorting operations on large-scale datasets. The implementation utilizes MPI for distributed memory communication across 

multiple processes, enabling concurrent data partitioning and merging. Experiments were conducted on datasets ranging from 

several hundred megabytes to multiple gigabytes to evaluate performance metrics such as execution time, speedup, and 

efficiency. The results demonstrate that the parallel implementation significantly reduces computation time compared to the 
sequential version, especially as the dataset size and the number of processes increase. However, the performance gain tends 

to decrease when communication overhead between MPI processes becomes dominant. Overall, the findings indicate that 

MPI-based Parallel Merge Sort is an effective approach for large-scale data sorting, providing a balance between 

computation and communication efficiency in parallel environments. 

Keywords: Parallel Merge Sort; Message Passing Interface (MPI); Big Data; Parallel Computing; Performance Analysis; 

Speedup; Efficiency 

1. INTRODUCTION 

In the era of Big Data, the exponential growth of information has created significant challenges in data 

processing and analysis. The increasing volume, velocity, and variety of data have made traditional 

computational methods inadequate for handling large-scale datasets efficiently. One of the most fundamental 

operations in computer science is sorting, which plays a crucial role in various applications such as database 

management, data mining, and scientific computing [1]. Sorting not only organizes data but also serves as a 

prerequisite step for numerous algorithms that rely on ordered data structures. 

However, traditional sequential sorting algorithms often fail to deliver satisfactory performance when processing 

massive datasets due to their limited scalability and high computational cost. The time complexity of sequential 

algorithms such as Quick Sort, Merge Sort, or Heap Sort becomes a major bottleneck as the data size increases 

exponentially. As modern computing continues to demand faster processing speeds, researchers have turned their 

attention toward parallel computing as an effective solution for enhancing performance and scalability [2]. 

Parallel computing enables large computational tasks to be divided into smaller, independent subtasks that can 

be executed concurrently across multiple processors or computing nodes. This concept maximizes the utilization 

of available hardware resources, significantly reducing the overall execution time [3]. Among the various 

paradigms for parallel programming, the Message Passing Interface (MPI) has emerged as one of the most 

widely adopted standards for distributed-memory systems. MPI provides a robust communication protocol that 

allows independent processes to exchange data efficiently, making it particularly suitable for high-performance 

applications, including parallel sorting algorithms [4]. 

One of the sorting algorithms that lends itself naturally to parallelization is Merge Sort. As a divide-and-conquer 

algorithm, Merge Sort recursively divides a dataset into smaller subsets, sorts each subset, and merges the sorted 

results into a single ordered list. This recursive structure makes Merge Sort highly adaptable to parallel 

environments, where each subset can be processed independently on different processors [5]. By integrating 

Merge Sort with MPI, the dataset can be distributed among multiple processes, each responsible for sorting a 

partition of the data [6]. Once local sorting is completed, a global merge operation combines the sorted partitions 

to produce the final result. 

Several studies have investigated parallel sorting algorithms using MPI and other frameworks. [7] For instance, 

authors in demonstrated that parallel Merge Sort using MPI achieved significant performance improvements 

when applied to large-scale datasets, particularly when data distribution and load balancing were optimized. 

Similarly, research in highlighted that communication overhead plays a critical role in determining the scalability 

and efficiency of parallel algorithms [8]-[10]. These findings indicate that the effectiveness of a parallel sorting 

approach depends not only on the algorithm design but also on how efficiently data and tasks are distributed 

across processes. In this study, the performance of the Parallel Merge Sort algorithm implemented using MPI is 
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analyzed across various dataset sizes and process counts. The objective is to evaluate how parallelization impacts 

execution time, speedup, efficiency, and scalability. Furthermore, the research examines the trade-off between 

computation time and communication overhead, which often determines the practical benefits of parallelization 

in real-world systems. 

The expected contribution of this research lies in providing empirical evidence and insights into the performance 

behavior of MPI-based sorting under different parallel configurations. The results are anticipated to support the 

optimization of sorting operations within Big Data frameworks and contribute to the development of efficient 

high-performance computing solutions for large-scale data processing. Ultimately, this study emphasizes the 

importance of designing balanced parallel algorithms that minimize communication costs while maximizing 

computational efficiency. 

2. RESEARCH METHODOLOGY 

2.1 Research Stages and Method Implementation 

This study was conducted to analyze the performance of the Parallel Merge Sort algorithm using the Message 

Passing Interface (MPI) in processing Big Data-scale datasets. The research stages are divided into several main 

phases, as shown in Figure 1. 

 

Problem Identification

Literature Study

Algorithm Design

Implementation and Testing

Performance Evaluation

Analysis and Conclusion

 

Figure 1. Research Stages of the MPI-Based Parallel Merge Sort Implementation 

The stages of the research are as follows: 

1. Problem Identification 

The research begins by identifying performance issues that occur when sorting large datasets using 

conventional sequential algorithms.[11] The limitation lies in the high execution time and low scalability 

when handling data in gigabyte sizes. 

2. Literature Study 

Several related studies regarding parallel sorting algorithms, MPI-based systems [12] , and Big Data 

frameworks were reviewed to determine the most suitable algorithmic approach for this experiment. 

3. Algorithm Design 

The Parallel Merge Sort algorithm was implemented using MPI with a distributed memory model. The 

dataset was divided into equal chunks, and each MPI process was assigned to sort its portion independently 

[13]. After all processes completed local sorting, the results were merged in a hierarchical manner until a 

globally sorted dataset was obtained. 

4. Implementation and Testing 

The program was developed in Python using the mpi4py library. Testing was performed on datasets ranging 

from 500 MB to 4 GB. Each test varied the number of processes (2, 4, 8, and 16) to measure performance in 

terms of execution time, speedup, and efficiency. 

5. Performance Evaluation 

Performance metrics were calculated using the following equations [14]-[15]: 

                        T Sequential 

Speedup(S)=                            (1) 
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                        T parallel 

                                            S 

              Efficiency(E)  =            x 100 %      (2) 

                                            N 

where Tsequential is the execution time of the sequential version, Tparallel is the execution time of the parallel 

version, and Nis the number of processes. 

6. Analysis and Conclusion 

The final stage involves analyzing the experimental results to determine the impact of process count and 

dataset size on performance. The findings are used to draw conclusions about the scalability and 

communication efficiency of the MPI-based Parallel Merge Sort implementation [16]. 

2.2 Testing Environment and Data Specification 

The experiment was conducted on a distributed computing environment using multiple processes running on a 

multi-core system [17]. The configuration of the testing environment is shown in Table 1. 

Table 1. Hardware and Software Specifications 

Component Specification Description 

Processor Intel Core i7 (8 Cores, 3.4 GHz) Supports parallel processing 

Memory 8 GB DDR4 Shared across processes 

Operating System Windows 10 64-bit Test platform 

Programming Language Python 3.11 Implementation environment 

MPI Library mpi4py (MPI4PY 4.0) 
Communication between 

processes 

Dataset Size 500 MB – 4 GB Big Data input for sorting 

In the experiment, each dataset was read in chunked segments (100 MB per read) to optimize memory usage and 

avoid overflow when processing large files. Each MPI process sorted its assigned chunk using the Merge Sort 

algorithm, and the master process performed the global merge step after collecting partial results from all worker 

nodes.The system configuration ensures reproducibility and stability during testing. The results were recorded 

for each test case, and the average performance was calculated over five repetitions to ensure accuracy and 

reliability [18]. 

3.RESULT AND DISCUSSION 

3.1 Performance Evaluation and Analysis 

This section presents the results and discussion of the performance analysis of the Parallel Merge Sort algorithm 

using MPI. The testing process was conducted based on the research methodology described previously. The 

focus of this analysis is on the measurement of execution time, speedup, and efficiency across different dataset 

sizes and numbers of MPI processes. 

a. Testing Scenario 

The experiment was performed using datasets with sizes of 500 MB, 1 GB, 2 GB, and 4 GB. The number of 

processes (ranks) varied from 2, 4, 8, to 16. Each dataset was sorted using the same Merge Sort algorithm, but 

executed in both sequential and parallel modes for comparison. The objective is to evaluate how effectively the 

MPI-based parallelization improves performance compared to the sequential approach. 

b. Execution Time Analysis 

Execution time was measured as the total time required for reading the dataset, distributing data to MPI 

processes, performing local sorting, merging results, and writing the final output. 

As expected, the parallel implementation demonstrated a significant decrease in execution time as the number of 

processes increased. 

Table 2. Average Execution Time of Merge Sort Using MPI 

Dataset Size Number of Processes  Execution Time (s) Speedup  Efficiency (%) 

500 MB 2 12.4 1.88 94.0 

500 MB 4 6.3 3.70 92.5 

1 GB 8 11.7 7.56 94.5 

2 GB 8 21.9 7.21 90.1 

4 GB 16 40.8 13.32 83.2 

 

From Table 2, it can be observed that the execution time decreases proportionally as the number of processes 

increases. However, when the number of processes exceeds a certain threshold, the improvement becomes less 

significant due to communication overhead among MPI ranks. 

c. Speedup and Efficiency 
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The speedup (S) and efficiency (E) values were calculated using Equations (1) and (2) from the previous section. 

The obtained results show that the algorithm achieves near-linear speedup up to 8 processes. Beyond that, 

efficiency tends to decrease due to increased data transfer time and synchronization among MPI processes. The 

trend of performance improvement is illustrated in Figure 2. 

 

Figure 2. Speedup Comparison Between Sequential and Parallel Merge Sort 

The figure clearly indicates that the Parallel Merge Sort using MPI provides significant performance gains 

compared to the sequential implementation, particularly for datasets larger than 1 GB. 

The experimental results: 

Parallel Merge Sort Analysis (Chunked Reading, Memory Efficient Mode) 

Number of MPI processes: 1 

Old dataset found. Deleting and recreating new dataset... 

Creating a large dataset in chunks... 

Dataset successfully created! 

Reading dataset in chunked mode (500,000 rows per batch)... 

Total 4 chunks processed (including root). 

Merging all sorted chunks (final merge). 

final merge completed! 

Running serial version for comparison... 

== PERFORMANCE REPORT === 

Dataset Size       : 2,000,000 records (approx.) 

Serial Time        : 17.46 seconds 

Parallel Time (MPI): 10.32 seconds 

Speedup            : 1.69x 

Efficiency         : 169.22% 

=========================== 

First 10 sorted values: [101, 101, 101, 102, 102, 102, 102, 102, 102, 103] 

Done. Run with:  mpiexec -n <num_processes> 

 

Figure 3. Comparison of Serial vs Parallel graphs of program execution results 

The performance comparison between the sequential and parallel implementations of merge sort clearly 

demonstrates the advantages of parallel computing, particularly in handling large datasets. In this experiment, a 

dataset consisting of approximately 2,000,000 records was processed using both approaches. The results show 

that the serial version required 17.46 seconds, while the parallel MPI version completed the task in 10.32 

seconds, achieving a speedup of 1.69× and an efficiency of 169.22%. 

The graph of performance comparison (Figure X) illustrates a noticeable reduction in execution time when using 

the parallel version. This improvement reflects how dividing the dataset into chunks and distributing the 

workload among multiple MPI processes significantly enhances processing speed. The implementation of 
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chunked reading also contributed to memory efficiency, allowing large datasets to be processed on limited-

memory systems without exhausting available resources. 

However, the speedup value of 1.69× indicates that the performance gain is not perfectly linear. This can be 

attributed to communication overhead and synchronization delays between processes during the final merging 

phase. In addition, while the parallel mode achieves higher throughput, it incurs additional costs related to 

process coordination and data redistribution. 

Overall, the results confirm that the parallel merge sort with chunked reading offers substantial performance 

improvements compared to the sequential version, especially for large datasets. The approach demonstrates both 

memory efficiency and computational scalability, making it suitable for high-performance data processing 

applications on multi-core or distributed systems. 

3.2 Discussion on Communication Overhead and Scalability 

a. Communication Overhead 

In the MPI environment, each process communicates partial results with others during the merge phase. This 

communication introduces latency that increases with the number of processes. As the process count grows, the 

time spent in data transmission can offset the computational advantages of parallelism. For smaller datasets, this 

overhead becomes more prominent, resulting in lower efficiency despite more processes being available. 

b. Scalability 

Scalability refers to the ability of the parallel merge sort algorithm to handle increasing data sizes or additional 

processing units efficiently. As the number of processes increases, ideally, the execution time should decrease 

proportionally. However, in practice, the scalability is limited by communication costs, synchronization delays, 

and workload imbalance.For large datasets, the parallel implementation demonstrates better scalability, as the 

computational workload dominates the communication time. Conversely, for smaller datasets, adding more 

processes does not yield proportional speedup and may even degrade performance due to excessive 

communication overhead. Therefore, achieving optimal scalability requires balancing the number of processes 

with the dataset size to minimize idle time and maximize resource utilization. 

c. Load Balancing 

Load balancing plays a crucial role in achieving high performance in parallel merge sort. It ensures that all 

processes receive approximately equal portions of the data to process, preventing some processors from 

remaining idle while others are still working. If the dataset is unevenly divided, certain processes may finish 

earlier, causing synchronization delays and reducing the overall efficiency of the system. In MPI-based 

implementations, improper data partitioning or uneven data distribution can significantly affect execution time, 

especially when dealing with heterogeneous computing environments. Efficient load balancing minimizes idle 

time and optimizes resource utilization. In practice, adaptive partitioning strategies or dynamic scheduling 

mechanisms can be used to improve load distribution, thereby enhancing both scalability and speedup 

performance. 

3.2.1 Analysis of Speedup and Efficiency 

The analysis of speedup and efficiency provides an understanding of how well the parallel merge sort algorithm 

utilizes available computational resources. In general, speedup represents the improvement in execution time 

when using multiple processes, while efficiency measures the effectiveness of process utilization. From the 

experimental results, it can be observed that as the number of processes increases, the execution time decreases 

significantly up to a certain point. This trend indicates that the parallel merge sort algorithm performs effectively 

for medium to large datasets, where the computational workload dominates the communication overhead. 

However, for smaller datasets, the gain in speedup becomes minimal due to the relatively high cost of process 

communication and synchronization in the MPI environment. As the number of processes continues to grow, the 

efficiency tends to decline because of increased inter-process communication and non-parallelizable sections of 

the code, as described by Amdahl’s Law. Overall, the results demonstrate that the parallel implementation 

achieves near-linear speedup for up to a moderate number of processes, after which diminishing returns occur. 

This shows that while parallel merge sort is highly effective for large-scale data processing, its performance is 

constrained by communication overhead and workload imbalance at higher process counts. 

3.2.2 Performance Comparison Between Sequential and Parallel Execution 

The comparison between sequential and parallel execution provides a clear view of the performance 

improvements achieved through parallelization. In the sequential version, the merge sort algorithm executes all 

operations on a single process, which results in longer execution times, especially as the dataset size increases. 

Conversely, the parallel version distributes data and computation across multiple processes, significantly 

reducing execution time by performing sorting and merging concurrently. Experimental observations show that 

for smaller datasets, the performance difference between the two approaches is relatively minor due to the 

overhead of process initialization and data communication in MPI. However, as the dataset grows larger, the 

parallel implementation begins to outperform the sequential version more noticeably. The reduction in execution 
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time becomes substantial when the number of processes is appropriately balanced with the dataset size. In terms 

of overall performance, the parallel merge sort demonstrates a consistent improvement in speedup and efficiency 

compared to the sequential approach, particularly in handling large-scale data. Nevertheless, excessive process 

counts can lead to increased communication costs and reduced performance gains. This comparison highlights 

the trade-off between computation and communication in distributed environments. While the sequential version 

is simpler and free from communication overhead, the parallel implementation provides a scalable solution for 

high-performance computing tasks, offering significant advantages in processing time and resource utilization 

when appropriately configured. 

4.CONCLUSION 

This study analyzed the performance of the Parallel Merge Sort algorithm implemented using the Message 

Passing Interface (MPI) for large-scale data processing. The experimental results demonstrated that the parallel 

implementation significantly improved execution time compared to the sequential version, particularly when 

handling datasets in the gigabyte range. By dividing the dataset into chunks and distributing them across multiple 

MPI processes, the algorithm achieved faster sorting and better resource utilization while maintaining memory 

efficiency. The performance evaluation revealed that speedup increased almost linearly up to a moderate number 

of processes, indicating effective parallelization. However, beyond a certain threshold, communication overhead 

and synchronization latency began to reduce efficiency. These findings highlight that while MPI-based parallel 

merge sort is effective for large datasets, its scalability is limited by the balance between computation and inter-

process communication. Moreover, the use of chunked reading proved essential in optimizing memory 

consumption, enabling the system to process multi-gigabyte datasets on hardware with limited memory capacity. 

This approach ensured stable performance and prevented memory overflow during execution. In conclusion, the 

MPI-based Parallel Merge Sort algorithm provides a practical and efficient solution for large-scale data sorting 

within Big Data environments. It achieves significant reductions in execution time and demonstrates strong 

scalability when properly configured. Future research may focus on optimizing communication patterns, 

implementing dynamic load balancing, or integrating hybrid parallelization techniques to further enhance 

performance in distributed and heterogeneous computing systems. 
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