ON volume 7, Nomor 1, September 2025
e-ISSN 2685-998X
DOI : 10.30865/json.v7i1.9071

¢ Jurnat Sigtem Komputer dan Informatika (JSON) Hal: 176-188

Hybrid DAC-GA and K-Means for Spatial Clustering of Stunting Risk
in North Sumatra

Andy Satria', Ibnu Rusydi', Dian Septiana?, Fanny Ramadhani?

L2 Faculty of Engineering and Computer Science, Universitas Dharmawangsa, Medan, Indonesia
34 Faculty of Mathematics and Natural Science, Medan State University, Medan, Indonesia
Email: *andysatria@dharmawangsa.ac.id, 2ibnurusydi@dharmawangsa.ac.id, *dianseptiana@unimed.ac.id,
4fannyr@unimed.ac.id
Correspondence Author Email: andysatria@dharmawangsa.ac.id*
Submitted: 27/08/2025; Accepted: 23/09/2025; Published: 30/09/2025

Abstract— Stunting continues to pose a severe global health concern, particularly in Indonesia, where prevalence rates persist
above international standards despite recent advances in reduction initiatives. Accurately documenting the regional variation
of stunting is critical to facilitate targeted interventions and successful policymaking. This paper offers a hybrid clustering
framework that merges the classic K-Means approach with the Dynamic Artificial Chromosomes Genetic approach (DAC-GA)
to increase the resilience and reliability of spatial analysis. The dataset used combines demographic and population statistics
from the Central Bureau of Statistics (BPS), strategic policy documents from the Regional Medium-Term Development Plan
(RPIJMD) of North Sumatra, and health indicators including stunting prevalence data from the Ministry of Health of the
Republic of Indonesia.

The research approach consists of four primary phases: data preparation, clustering model construction, cluster evaluation, and
geographical visualization. Three evaluation metrics Sum of Squared Errors (SSE), Davies—Bouldin Index (DBI), and
Silhouette Coefficient were applied to validate clustering performance. Results demonstrate that DAC-GA dynamically
determined the ideal number of clusters at k=2 in just 1.171677 seconds, classifying Kota Medan and Deli Serdang into the
low-risk cluster, while all other districts were consistently put into the high-risk cluster. Both DAC-GA and standard K-Means
yielded similar spatial maps, giving significant methodological validation and strengthening the dependability of the findings.
The study reveals not just the technical advantages of DAC-GA in maximizing clustering but also its practical utility in guiding
spatially targeted health interventions. Future research is recommended to add dimensionality reduction utilizing Principal
Component Analysis (PCA) to improve computing efficiency and enhance the interpretability of clustering results.

Keywords: Stunting; Spatial Clustering; K-Means; Dynamic Artificial Chromosomes Genetic Algorithm (DAC-GA); North
Sumatra

1. INTRODUCTION

Stunting, defined as hindered linear growth due to chronic undernutrition and frequent infections in the
crucial first 1,000 days of life, is a significant global public health issue [1][2]. Its long-term consequences
transcend mere physical development, including protracted cognitive advancement, lower learning ability,
decreased economic production in adulthood, and an elevated risk of noncommunicable diseases. These results
together strengthen the cycles of poverty and inequality that last for generations [3]. The most recent UNICEF-
WHO-World Bank Joint Child Malnutrition Estimates (JME) say that about 150.2 million children under the age
of five were stunted in 2024. This is progress, but it is still far from the 2030 global goal [4]. The slow pace of
progress shows how important it is to come up with new, accurate, and data-driven solutions.

Indonesia still has one of the highest rates of stunting in Southeast Asia, hence the government has put the
National Strategy for Accelerating Stunting Prevention (Stranas Stunting) into effect for 2021-2024 [5][6]. Data
from the 2024 Indonesian Nutrition Status Survey (SSGI) suggest optimistic improvement, with the national
prevalence of undernutrition dropping from 24.4% in 2021 to 19.8% in 2024 [7]. Despite this improvement, the
frequency remains over the World Health Organization’s 20% threshold for severe public health problems, with
large regional variations remaining across the archipelago [7][8].

North Sumatra is a good example of these differences, as the incidence of these diseases are always higher
than the national norm [7]. These discrepancies are significantly shaped by intricate socio-economic factors, such
as maternal education, healthcare accessibility, sanitation, and geographical isolation [9]. Addressing this
complexity demands analytical frameworks capable of extending beyond aggregate statistics to uncover specific
patterns and high-risk areas. Spatial epidemiology has proven particularly beneficial in this regard, regularly
proving that stunting exhibits non-random, regionally concentrated patterns. Empirical research conducted in
Indonesia, including Wardana [10] in South Lampung and Ramadhani [2] in North Sumatra, substantiates the
existence of significant spatial autocorrelation, with clusters closely associated with poverty and restricted access
to health services.

The ongoing digital revolution of health information systems has dramatically transformed public health
data collecting, management, and analysis, giving new prospects for advanced research and evidence-based
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policymaking [11]. Large-scale digital health databases now facilitate the implementation of data-driven
methodologies that transcend traditional statistical frameworks, enabling the examination of intricate,
multidimensional, and dynamic health phenomena. Within this paradigm, Machine Learning (ML) has evolved as
a powerful analytical tool, particularly suited to modeling non-linear relationships, processing diverse data, and
generating high-accuracy prediction models [12]. This skill is particularly important to stunting and malnutrition,
conditions driven by complex and linked biological, environmental, and socio-economic elements that frequently
defy traditional modeling methodologies.

A increasing amount of global research emphasizes the effectiveness of ML in detecting crucial risk factors
and predicting nutritional consequences [13]. Techniques such as Random Forests and Support Vector Machines
(SVM) consistently outperform classic regression models by allowing complicated interactions among factors,
including household income, maternal education, sanitation, and food security [14]. Applications of these
methodologies in South Asia and Sub-Saharan Africa, for example, have discovered region-specific factors of
stunting, enabling the creation of more context-sensitive therapies. However, despite these gains, the application
of ML to stunting research in Indonesia remains limited. In particular, the integration of ML with spatial analysis
essential for detecting geographic grouping and disparities has yet to be thoroughly studied or generally used [15].

In spatial epidemiology, clustering algorithms serve as crucial tools for finding geographic concentrations
of disease or malnutrition. Among these strategies, the K-Means algorithm has been widely adopted due to its
computational simplicity and scalability for big, multivariate datasets [16]. Nonetheless, K-Means is restricted by
inherent restrictions. Its sensitivity to initial centroid selection can lead to unstable results and convergence to local
optima, while its performance declines in the presence of high-dimensional, noisy, or diverse data characteristics
typical of nutritional and socio-demographic datasets. Such flaws affect the reliability of clustering outcomes,
potentially distorting spatial risk evaluations. These mistakes entail real-world consequences, including the
misallocation of scarce public health resources, the entrance of biases into policymaking, and the overall reduction
in the effectiveness of stunting reduction efforts.

To minimize these constraints, hybrid models merging K-Means with metaheuristic and evolutionary
optimization strategies have been developed. Genetic Algorithms (GA), inspired by concepts of natural selection
and evolutionary adaptation, are particularly promising in this setting [17]. A new development, the Dynamic
Artificial Chromosomes Genetic Algorithm (DAC-GA), presents adaptive solutions for centroid initialization
through dynamic chromosomal evolution. This method accelerates the global search process, minimizes the risk
of premature convergence, and considerably improves clustering robustness. Prior applications of DAC-GA in
health-related fields, like tuberculosis clustering and outbreak prediction, demonstrate its capacity to effectively
manage complex, multidimensional datasets characterized by high variability.

Nevertheless, research applying DAC-GA to stunting remains scarce, particularly in Indonesia, where
geographical heterogeneity and regional inequities are especially apparent[18]. Against this setting, the present
work tackles two key research gaps. First, it tries to extend the underexplored application of optimal spatial ML
approaches for stunting study in Indonesia by building and testing a hybrid K-Means—-DAC-GA model. Second, it
intends to build a robust and fine-grained analytical framework capable of providing high-resolution stunting risk
maps specific to the province of North Sumatra. By adopting this innovative analytical approach, the study not
only helps to increasing scientific debate on spatial ML applications but also gives a practical decision-support
tool for local governments and communities [19]. Importantly, this tool is designed to enhance community health
autonomy by enabling stakeholders in North Sumatra to independently identify, evaluate, and resolve important
health concerns. Through interventions that are evidence-based, participatory, and context-sensitive, this research
emphasizes the transformative potential of digital health technologies in promoting sustainable and resilient public
health systems [20].

2. RESEARCH METHODOLOGY

The study follows a defined technique to analyze the performance of a hybrid clustering method that
combines the K-Means algorithm with the Dynamic Artificial Chromosomes Genetic Algorithm (DAC-GA). The
hybrid model is compared to the classic K-Means technique to test its capacity to increase clustering accuracy,
stability, and spatial representation. To ensure clarity and rigor, the entire research design is separated into four
phases, as indicated in Figure 1.
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Figure 1. Hybrid DAC-GA K-Means Research Flow

The first phase comprises data preprocessing, which includes data cleaning, transformation, and
standardization to assure quality and consistency. The second step focuses on creating clustering models, utilizing
both the regular K-Means and the proposed K-Means-DAC-GA hybrid technique. Next, a cluster validation phase
assesses the quality and strength of the clustering results using relevant assessment measures. Finally, the data are
translated into spatial representations of stunting risk, allowing for the discovery of geographic patterns and
clusters with major public health implications. Overall, this method offers a strong workflow that promotes
analytical reliability and deepens the relationship between computational methods and practical insights for spatial
epidemiology.

2.1 Datasets and Preprocessing Phase

The initial part of the research focuses on preparing the input data through a series of refinement methods
aimed at ensuring its quality and dependability for further analysis. This method involves resolving missing values,
removing noise, and applying normalization techniques to normalize feature scales. Such preparation is necessary
because clustering algorithms particularly distance-based techniques like K-Means are highly sensitive to scale
fluctuations and the presence of outliers, which can distort clustering conclusions [21]. For this study, the dataset
was compiled from three primary and authoritative sources: demographic and population statistics provided by the
Central Bureau of Statistics (BPS), policy information derived from the 2023 Regional Medium-Term
Development Plan (RPJMD) of North Sumatra, and health-related indicators, including stunting prevalence,
obtained from the Ministry of Health of the Republic of Indonesia. Together, these sources gave comprehensive
and dependable data to support the analysis.

2.2 Model Creation

In this stage, a dual-path experimental design conducts the clustering process. The first pathway uses the
traditional K-Means algorithm as the baseline model for comparison. The second pathway combines K-Means
with the Dynamic Artificial Chromosomes Genetic Algorithm (DAC-GA) to improve the clustering process. This
design helps to systematically evaluate the performance of the hybrid model against the conventional K-Means
method.

2.2.1 K-Means (Baseline Model)

The baseline model uses the K-Means algorithm, which divides the dataset into k clusters while
minimizing variance within each cluster. The process starts with randomly choosing k centroids. It then moves
through two main steps iteratively [20]. Given a dataset,

D= {x1,%5, ....,X}, XxX; €ER™ )
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Each observation is allocated to the cluster with the closest centroid according to the Euclidean metric.
The average of each cluster's currently assigned points is then used to recalculate its centroid. Until a convergence
criterion is satisfied either when the centroid locations stabilize within a predetermined tolerance or when the
objective function typically the within-cluster sum of squared distances can no longer be reduced these two steps
are repeated. Stated differently, until stability is reached, the approach alternates between an assignment step and
a centroid reestimation step. Formally, the goal of K-Means optimization is stated as [22]:

k

ming ' Y lx = il )

i=1x€C;

Where C = {Cy, Cy, ... ,Ci} represents the set of clusters, and p; denotes the centroid of cluster Ci. calculated as the
mean of all data points assigned to that cluster.

The K-Means optimization process works in two main steps. First, in the assignment step, we allocate
each data point xp to the cluster with the nearest centroid based on Euclidean distance:

¢, = arg L.E’{';‘;’ik} l|x, — ,ul-||2, (3)

where cp represents the cluster label of observation x,. Second, in the update step, the centroids are recalculated to
reflect the new cluster memberships:
72
. = x ,
M el £ ™ )

with |Ci| denoting the number of data points in cluster Ci.

The method iteratively repeats these two steps until convergence is achieved. Convergence is generally
defined by the stabilizing of centroid positions, wherein subsequent updates yield negligible alterations in the
cluster centers, or by the reduction of the objective function, particularly the within-cluster sum of squares
(WCSS). In practical applications, convergence may also be assessed using specified stopping conditions, for a
maximum iteration count or a tolerance level for centroid displacement. This recurrent refinement guarantees that
the final clustering configuration reflects a locally optimal partition of the data, although it may not align with the
global optimum due to the algorithm's sensitivity to initial centroid selection. The procedural flow of the typical
K-Means algorithm is delineated in the pseudocode below, demonstrating the initialization, assignment, and update
phases until the convergence requirements are met:

Input:

e Dataset D= {x_1,x2,..,xn}&x_i € R"m
e Number of clusters k

Output:
e Partition of data into clusters C = {C:;, Cz,..., Cx}
e Final centroids u = { ui, U2,.., MHx}

1: Initialize centroids ul, u2, .., pk by randomly selecting k points from X

2: repeat

3: # Assignment Step

4: for each data point xp € X do

5: Assign xp to the nearest centroid:
6: cp « argmin i || xp - pi [|]?
7 end for

8:

9: # Update Step

10: for each cluster Ci, 1 =1, .., k do
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11: Recalculate centroid pi:

12: ui <« (1 / [Ci]) * © (xp € Ci) xp
13: end for

14:

15: # Convergence Check

16: until centroids pi stabilize or maximum iterations reached

17: return final clusters C and centroids p

Although the K-Means technique is widely known and commonly used and is computationally efficient,
it comes with a number of acknowledged limitations. One of the key concerns is that K-Means is sensitive to the
beginning position of the centroids, which might yield inconsistent results and unsatisfactory partitions. An
additional difficulty with the K-Means algorithm is that it has no means of assisting a user determine the ideal
number of clusters. Thus, the selection of clusters (k) will still be a challenge. Moreover, K-Means usually
converge to the local minimum of the goal function and does not identify the global maximum. This is particularly
problematic when doing clustering in the presence of noise or in high-dimensionality datasets [23], [24]. These
shortcomings indicate to the requirement of applying an extra optimization strategy in the second experimental
branch [25]. The purpose of the new optimization is to improve the centroid initialization, better support a global
search, and overall provide more stable and consistent clustering conclusions.

2.2.2 K-Means Optimization with the DAC-GA

The second part of the experimental design uses the Dynamic Artificial Chromosomes Genetic Algorithm
(DAC-GA) as an optimization tool to improve the clustering process[26]. It specifically enhances how centroids
are initialized in K-means. DAC-GA is an evolutionary computation method inspired by natural selection and
adaptability. It builds on the traditional Genetic Algorithm (GA) by introducing chromosome structures that
change during the search process. This adaptive feature helps the algorithm keep population diversity, prevent
premature convergence, and balance exploration and exploitation of the solution space [27]. As a result, it
addresses the limitations found in standard K-means and traditional GA approaches [28].

In this framework, each candidate solution is represented as an artificial chromosome X = (M, Z), where
M € R¥* 9 represents the matrix of centroids, and = € RX X ¢ contains the mutation strengths associated with each
gene. The objective function for assessing the quality of a chromosome is based on the within-cluster sum of
squares (WCSS), also known as the sum of squared errors (SSE). This is defined as:

k

jon = > > k= wll’ ©)

i=1 xp€Ci(M)

Where each data point x, is assigned to the nearest centroid x._For selection, DAC-GA uses fitness-proportionate
sampling. In this method, probabilities are proportional to F(X) = 1 / (J(X) + &), or tournament-based selection.
This approach ensures that higher-quality solutions are more likely to survive.

Reproduction in DAC-GA occurs through recombination and mutation. In crossover, offspring centroids
are created by linearly combining the centroids of two parents. Meanwhile, strategy parameters are updated using
geometric averaging. Mutation follows a self-adaptive Gaussian process. In this process, both centroids and
mutation strengths evolve based on:

ro_ I ro_ .,
oy = oyexp(t'z + tzy), Wy = Uy + 07 €, (6)

where z,z;,€; ~N(0,1), and 7,7" are global learning rates. A unique feature of DAC-GA is its dynamic
adaptation rule. In this rule, mutation strengths X change based on search performance. This allows the method to
balance exploration and exploitation of the solution space.

Following the creation of offspring, the population is updated using an elitist replacement method that
guarantees the survival of the best-performing solutions. The evolutionary cycle progresses until the maximum
number of generations Tmax iS reached or convergence is attained, characterized by minor improvement in the
objective function across consecutive generations.The resulting solution X* = (M*X*), spesifically the
optimized centroid matrix M*, is then passed as the initialization stage for the K-Means clustering process.

Through this integration, the hybrid DAC-GA and K-Means model is aimed to solve two major flaws
of standard K-Means: sensitivity to initial centroid placement and wvulnerability to local minima. This
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methodological innovation offers more consistent, reliable, and interpretable clustering results, particularly in the
context of geographic risk mapping for stunting prevalence.

To operationalize the suggested methodology, the hybrid model utilizes DAC-GA as an optimization
method for centroid creation, followed by the usual K-means clustering procedure. This combination ensures that
the centroids utilized in the clustering step are optimized by evolutionary adaptation, thereby limiting the limits of
standard K-means. For clarity and reproducibility, the procedural workflow of the hybrid DAC-GA and K-means
method is detailed in the pseudocode below:

Input:

° Dataset X = {xi1, X2,.., Xn}, with n data points in Rd
. Number of clusters k

. Population size P

° Maximum generations Tnmax

Output:
e Optimized centroid set M* = {12, ..., Uk}
e Final clustering assignment of dataset X
l: Initialize a population of P chromosomes x = (M, %),

where M is centroid matrix and % is mutation strength.

2: Evaluate fitness of each chromosome:

F(x) =1/ (23 |lxp - uill? + &)
3: repeat
4: # Selection
5: Select parents from population based on fitness.
6:
7: # Crossover
8: For each pair of parents:
9: Generate offspring centroids:

M_off - a~M_parent1 + (l—a)~M_parent2

10: Update mutation strength % off accordingly.
11:
12: # Mutation (self-adaptive)
13: For each gene pi!? in chromosome:
14: oift' « oif¢ * exp(t'-N(0,1) + T-Ni¢(0,1))
15: uif' < pi¢ + oif'-N(0,1)
16:
17: # Evaluation
18: Compute fitness of offspring F(x off).
19:
20: # Replacement
21: Form new population using elitism.
22:
23: # Dynamic Adaptation
24 Adjust ¥ according to diversity and convergence level.
25:

26: until maximum generations Tmax reached
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27:

28: Select best chromosome x* = (M*, Z*).
29:

30: # K-Means Refinement

31: Initialize centroids with M*.

32: repeat

33: # Assignment Step

34: For each data point xp € X:

35: Assign xp to nearest centroid pi:
Cp « argmin_i | Ixp — pill?

36:

37: # Update Step

38: For each cluster Ci, i = 1,..,k:

39: ui <« (1 / ICil) * % (xp € Ci) xp

40:

41: until centroids pi stabilize or maximum iterations reached
42

43: Return final clusters C and optimized centroids M*

The pseudocode demonstrates the initial setup of the population, evaluation of potential solutions,
implementation of evolutionary operators, and the final refining of clusters using the optimized centroids.

2.3 Model Evaluation

To thoroughly assess the validity of the clustering findings, three internal validation metrics were applied:
the Sum of Squared Errors (SSE), the Davies—Bouldin Index (DBI), and the Silhouette Coefficient. These
indicators provide distinct viewpoints on cluster compactness, isolation, and assignment appropriateness, which
are crucial for confirming the robustness of spatial stunting cluster analysis.

2.3.1 Sum of Squared Errors (SSE)

The Sum of Squared Errors (SSE), commonly referred to as the Within-Cluster Sum of Squares (WCSS),
analyzes cluster homogeneity by measuring the squared distance of each data point to its assigned centroid [22].
The formal expression is:

k
N T ™)

i=1 Xp EC

Where k is the number of clusters, x, denotes a data point in cluster Cjand ; represents the centroid of cluster Ci.
A lower SSE value suggests tighter clusters and greater homogeneity within each group. In the context of spatial
stunting study, lower SSE shows that districts grouped together share very consistent prevalence rates and socio-
economic features. However, SSE reduces monotonically as the number of clusters grows, making it necessary to
match this measure with additional evaluation criteria or heuristic methods to prevent overestimating the ideal
cluster count.

2.3.2 Davies - Bouldin Index (DBI)

The DBI analyzes clustering performance by considering both intra-cluster scatter and inter-cluster
separation [29]. It is defined as:

k
1 S+
o =15, G

Copyright © 2025 Andy Satria, Page 182
This Journal is licensed under a Creative Commons Attribution 4.0 International License


https://creativecommons.org/licenses/by/4.0/

ON volume 7, Nomor 1, September 2025
e-ISSN 2685-998X
DOI : 10.30865/json.v7i1.9071

¢ Jurnat Sigtem Komputer dan Informatika (JSON) Hal: 176-188

where S; = ﬁzxp ccllxp — wi| represents the average dispersion of cluster i, and d(u;, 1) is the Euclidean
L
distance between centroids y; and ;.

Lower DBI values indicate more compact and well-separated clusters. In spatial stunting analysis, a lower
DBI suggests that regions in distinct clusters show clearly different epidemiological characteristics. This difference
provides stronger evidence for region-specific intervention policies. However, DBI may be influenced by uneven
cluster sizes, so it requires careful interpretation with contextual knowledge [30].

2.3.3 Silhouette Coefficient

The Silhouette Coefficient assesses how appropriately each data point is assigned to its cluster relative to
other alternative clusters. It is calculated as [19], [31]:

b(xp) - a(xp)

max{a(x,), b(x,)}

S(xp) = )

where a(x,) is the average distance of data point X, to all other points in the same cluster, and b(x,) is the
minimum average distance from X, to points in a different cluster. The overall silhouette score is obtained by
averaging s(x,) across all data points.

Values vary from —1 to +1, with higher values suggest better-defined clusters. In spatial epidemiology, a
high silhouette score suggests that districts are firmly connected with their allocated clusters, while lower scores
highlight boundary zones where stunting prevalence may overlap between categories. This diagnostic capacity is
particularly crucial for local governments, as transitional or uncertain areas may demand personalized policy
responses rather than uniform measures.

3. RESULT AND DISCUSSION

This section delineates the experimental results derived from the implementation of both the conventional K-
Means algorithm and the proposed hybrid method, which integrates K-Means with a Dynamic Atrtificial
Chromosome Genetic Algorithm (DAC-GA). The analysis evaluates the efficacy of the algorithms in determining
the appropriate number of clusters (k), compares the quality of the resultant clusters, and interprets their
geographical distribution for stunting cases in North Sumatra. The assessment is based on three primary metrics:
the Elbow Method (SSE), Silhouette Score, and Davies-Bouldin Index (DBI), in addition to Execution Time and
Spatial Visualization.

3.1 Performance Analysis of the Baseline K-Means Algorithm

Elbow Method (SSE) Silhouette Score Davies-Bouldin Index (DBI)

=== KTerbaik =2 === Bkor Tertinggi = 0.54 === Skor Terendah = 0.74
1800

1400

1200

Silhouette Score

1000

Sum of Squared Errar (SSE)

BOO

600

Jumiah Klaster (k) Jumlah Klaster (k) Jumlah Kiaster (k)

Figure 2. Evaluation Metrics of K-Means for Different K Values

Figure 1 depicts the efficacy of the K-Means clustering model across various k values by showcasing
three evaluative dimensions: compactness, separation, and overall clustering quality. The initial graphic illustrates
the progression of cluster compactness as the quantity of clusters rises, demonstrating a consistent enhancement
with the introduction of additional partitions. The second graphic illustrates how well the clusters are separated,
exhibiting sharper distinctions at lower cluster counts and a progressive reduction as the number climbs.
Simultaneously, the third graphic illustrates the stability of cluster boundaries, where diminished values signify
more dependable structures. Collectively, these visuals offer a summary of the clustering behavior across different
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settings. They illustrate how augmenting the number of clusters affects the equilibrium between compactness and
separation, while also indicating the range in which cluster quality is most constant. This visual evidence serves
as the foundation for evaluating the quantitative facts offered in the ensuing table.

Table 1. Summary of K-Means Result (k = 2 to k = 10)

Number of Clusters (k) Time (s) SSE DBI Silhouette Score
2 1.854508 1653.149229 0.744897 0.539733
3 0.006997 1213.793528 0.857971 0.361179
4 0.009023 1132.367455 1.023950 0.300367
5 0.008425 993.111165 1.279199 0.150877
6 0.010049 919.676259 1.141842 0.113342
7 0.011009 804.601005 0.911717 0.123469
8 0.007514 716.445699 1.242122 0.106540
9 0.009998 660.584178 1.122229 0.110606
10 0.010749 615.754706 1.126576 0.102144

Table 1 contains the detailed numerical values of the evaluation measures across multiple values of k.
Consistent with the graphical results, the Sum of Squared Errors (SSE) reduces monotonically as the number of
clusters grows, showing tighter within-cluster compactness but without necessarily enhancing interpretability. The
Silhouette Score gets its highest value of 0.539 with k = 2, reinforcing that this configuration generates the most
distinct and well-separated clusters. Similarly, the Davies—Bouldin Index (DBI) records its lowest value of 0.744
at k = 2, further demonstrating the superiority of the two-cluster approach. While execution times vary significantly
between different k, they remain within a fairly small range (milliseconds), demonstrating that computational
performance is not a limiting constraint. Overall, the tabular evidence substantiates the conclusion drawn from the
visual analysis, namely that k = 2 provides the ideal balance of compactness, separation, and efficiency for the
given dataset.

3.2 Performance Analysis of the Optimized K-Means Algorithm with DAC-GA
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Figure 3. Visualization of Clustering Results

The resulting cluster visualization, displayed in Figure 3, separates the dataset into two distinct groups
depending on the best k. The scatterplot, constructed using the first two major components, displays how the
algorithm isolates the data points into compact and clearly defined clusters. Cluster 0, displayed in blue, contains
most of the observations with a fairly dense spatial distribution. In contrast, Cluster 1, shown in green, isolates a
smaller group of data that significantly differs from the main cluster. This division reveals important structural
variations within the data, which may relate to areas with different rates of stunting and socio-economic conditions.

The Dynamic Artificial Chromosomes Genetic Algorithm (DAC-GA) showed its effectiveness in
determining the best number of clusters without needing extensive calculations for different values of k. Unlike
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the standard K-Means method, which requires repeated assessments for each possible k, DAC-GA integrates the
optimization process within the clustering framework. This leads to a faster convergence toward the best solution.
As shown in Table 2, the algorithm found k = 2 to be the best cluster configuration in just 1.171677 seconds. This
eliminates the need to test other cluster counts. This capability highlights DAC-GA's potential for working with
high-dimensional and spatially varied datasets, where speed and reliability are crucial.

Table 2. Optimized K-Means with DAC-GA Evaluation Result

Number of Clusters (k) Time () SSE DBI Silhouette Score
2 1.171677 1653.1492 0.7449 0.5397

Furthermore, the cluster quality evaluation verifies the suitability of the chosen configuration, with a Sum
of Squared Error (SSE) of 1653.1492, a Davies—Bouldin Index (DBI) of 0.7449, and a Silhouette Score of 0.5397.
These numbers collectively confirm that the clustering outcome generated by DAC-GA achieves a compromise
between compactness and separation, demonstrating the robustness of the technique in capturing spatial
inequalities in stunting.

3.3 The Spatial Maps

Figure 4. K-Means Spatial Cluster Figure 5. Optimized K-Means + DAC-GA Spatial Cluster

Table 3. Distribution of Stunting by Both Study

Cluster (Color)  Category Districts/Cities

Green Low Kota Medan, Deli Serdang

Langkat, Simalungun, Asahan, Kota Binjai, Kota Tanjung Balai, Kota
Gunungsitoli, Tapanuli Utara, Tapanuli, Tengah, Tapanuli Selatan, Padang
Lawas, Padang Lawas Utara, Mandailing Natal, Humbang Hasundutan,
Pakpak Bharat, Labuhan Batu, Labuhan Batu Utara, Labuhan Batu Selatan,
Toba, Samosir, Dairi, Karo, Serdang Bedagai, Tebing Tinggi, Batu Bara,
Padang Sidempuan, Nias, Nias Utara, Nias Selatan, Nias Barat

Red High

Both the K-Means and Optimized K-Means with DAC-GA methods produced the same spatial clustering
results, as shown in the maps at Figure 4 and 5. Table 3 lists the cities and districts divided into low-risk stunting
and high-risk stunting clusters. It confirms that in both methods, Kota Medan and Deli Serdang consistently fell
into the low-risk cluster (green). In contrast, all other districts in North Sumatra were placed in the high-risk cluster
(red). This highlights the uniqueness of Kota Medan and Deli Serdang, which have much lower stunting rates
compared to the rest of the province.
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The consistency between the Optimized K-Means with DAC-GA method, which finds the best cluster
arrangement, and the standard K-Means approach provides solid support for the methods. Even though their
computational processes differ, both approaches reached the same cluster. This shows that the division between
low-risk and high-risk areas is not just a result of method choice, it reflects real differences in the spatial data.

Academically, this result strengthens the trustworthiness and accuracy of the clustering findings. It shows
that they are useful for planning spatial policies and directing focused stunting interventions within the province.
From a policy view, identifying Kota Medan and Deli Serdang as low-risk areas, compared to most districts in the
high-risk group, offers useful insights for the provincial government. The government can focus on targeted
interventions and allocate resources to high-risk districts. Successful practices in low-risk areas may serve as
models to replicate. This way, the spatial clustering results not only confirm the methodological framework but
also provide clear guidance for speeding up stunting reduction efforts in North Sumatra.

4. CONCLUSION

This study shows that combining the Dynamic Artificial Chromosomes Genetic Algorithm (DAC-GA)
with the K-Means method effectively analyzes the spatial patterns of stunting prevalence in North Sumatra. Both
methods consistently identified Medan City and Deli Serdang as low-risk clusters, while other districts fell into
the high-risk cluster. This confirms real spatial differences. Methodologically, DAC-GA can dynamically
determine the number of clusters efficiently, converging at k=2 in just 1.171677 seconds without needing multiple
testing scenarios. It also handles complex and varied health datasets effectively. Evaluation metrics further
confirmed the strength of this approach, ensuring reliable clusters for practical interpretation. These findings offer
valuable insights for stunting prevention programs. They allow for more targeted interventions in high-risk districts
and provide lessons from low-risk areas. For future research, it is advised to include Principal Component Analysis
(PCA) in the preprocessing stage. This can help reduce redundancy, minimize noise, improve efficiency, and
clarify cluster formation as well as the understanding of spatial stunting risk patterns.
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