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Abstract− Stunting continues to pose a severe global health concern, particularly in Indonesia, where prevalence rates persist 

above international standards despite recent advances in reduction initiatives. Accurately documenting the regional variation 

of stunting is critical to facilitate targeted interventions and successful policymaking. This paper offers a hybrid clustering 

framework that merges the classic K-Means approach with the Dynamic Artificial Chromosomes Genetic approach (DAC-GA) 
to increase the resilience and reliability of spatial analysis. The dataset used combines demographic and population statistics 

from the Central Bureau of Statistics (BPS), strategic policy documents from the Regional Medium-Term Development Plan 

(RPJMD) of North Sumatra, and health indicators including stunting prevalence data from the Ministry of Health of the 

Republic of Indonesia. 
The research approach consists of four primary phases: data preparation, clustering model construction, cluster evaluation, and 

geographical visualization. Three evaluation metrics Sum of Squared Errors (SSE), Davies–Bouldin Index (DBI), and 

Silhouette Coefficient were applied to validate clustering performance. Results demonstrate that DAC-GA dynamically 

determined the ideal number of clusters at k=2 in just 1.171677 seconds, classifying Kota Medan and Deli Serdang into the 
low-risk cluster, while all other districts were consistently put into the high-risk cluster. Both DAC-GA and standard K-Means 

yielded similar spatial maps, giving significant methodological validation and strengthening the dependability of the findings. 

The study reveals not just the technical advantages of DAC-GA in maximizing clustering but also its practical utility in guiding 

spatially targeted health interventions. Future research is recommended to add dimensionality reduction utilizing Principal 
Component Analysis (PCA) to improve computing efficiency and enhance the interpretability of clustering results. 

 

Keywords: Stunting; Spatial Clustering; K-Means; Dynamic Artificial Chromosomes Genetic Algorithm (DAC-GA); North 
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1. INTRODUCTION 

Stunting, defined as hindered linear growth due to chronic undernutrition and frequent infections in the 

crucial first 1,000 days of life, is a significant global public health issue [1][2]. Its long-term consequences 

transcend mere physical development, including protracted cognitive advancement, lower learning ability, 

decreased economic production in adulthood, and an elevated risk of noncommunicable diseases. These results 

together strengthen the cycles of poverty and inequality that last for generations [3]. The most recent UNICEF–

WHO–World Bank Joint Child Malnutrition Estimates (JME) say that about 150.2 million children under the age 

of five were stunted in 2024. This is progress, but it is still far from the 2030 global goal [4]. The slow pace of 

progress shows how important it is to come up with new, accurate, and data-driven solutions. 

Indonesia still has one of the highest rates of stunting in Southeast Asia, hence the government has put the 

National Strategy for Accelerating Stunting Prevention (Stranas Stunting) into effect for 2021–2024 [5][6]. Data 

from the 2024 Indonesian Nutrition Status Survey (SSGI) suggest optimistic improvement, with the national 

prevalence of undernutrition dropping from 24.4% in 2021 to 19.8% in 2024 [7]. Despite this improvement, the 

frequency remains over the World Health Organization’s 20% threshold for severe public health problems, with 

large regional variations remaining across the archipelago [7][8]. 

North Sumatra is a good example of these differences, as the incidence of these diseases are always higher 

than the national norm [7]. These discrepancies are significantly shaped by intricate socio-economic factors, such 

as maternal education, healthcare accessibility, sanitation, and geographical isolation [9]. Addressing this 

complexity demands analytical frameworks capable of extending beyond aggregate statistics to uncover specific 

patterns and high-risk areas. Spatial epidemiology has proven particularly beneficial in this regard, regularly 

proving that stunting exhibits non-random, regionally concentrated patterns. Empirical research conducted in 

Indonesia, including Wardana [10] in South Lampung and Ramadhani [2] in North Sumatra, substantiates the 

existence of significant spatial autocorrelation, with clusters closely associated with poverty and restricted access 

to health services. 

The ongoing digital revolution of health information systems has dramatically transformed public health 

data collecting, management, and analysis, giving new prospects for advanced research and evidence-based 
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policymaking [11]. Large-scale digital health databases now facilitate the implementation of data-driven 

methodologies that transcend traditional statistical frameworks, enabling the examination of intricate, 

multidimensional, and dynamic health phenomena. Within this paradigm, Machine Learning (ML) has evolved as 

a powerful analytical tool, particularly suited to modeling non-linear relationships, processing diverse data, and 

generating high-accuracy prediction models [12]. This skill is particularly important to stunting and malnutrition, 

conditions driven by complex and linked biological, environmental, and socio-economic elements that frequently 

defy traditional modeling methodologies. 

A increasing amount of global research emphasizes the effectiveness of ML in detecting crucial risk factors 

and predicting nutritional consequences [13]. Techniques such as Random Forests and Support Vector Machines 

(SVM) consistently outperform classic regression models by allowing complicated interactions among factors, 

including household income, maternal education, sanitation, and food security [14]. Applications of these 

methodologies in South Asia and Sub-Saharan Africa, for example, have discovered region-specific factors of 

stunting, enabling the creation of more context-sensitive therapies. However, despite these gains, the application 

of ML to stunting research in Indonesia remains limited. In particular, the integration of ML with spatial analysis 

essential for detecting geographic grouping and disparities has yet to be thoroughly studied or generally used [15]. 

In spatial epidemiology, clustering algorithms serve as crucial tools for finding geographic concentrations 

of disease or malnutrition. Among these strategies, the K-Means algorithm has been widely adopted due to its 

computational simplicity and scalability for big, multivariate datasets [16]. Nonetheless, K-Means is restricted by 

inherent restrictions. Its sensitivity to initial centroid selection can lead to unstable results and convergence to local 

optima, while its performance declines in the presence of high-dimensional, noisy, or diverse data characteristics 

typical of nutritional and socio-demographic datasets. Such flaws affect the reliability of clustering outcomes, 

potentially distorting spatial risk evaluations. These mistakes entail real-world consequences, including the 

misallocation of scarce public health resources, the entrance of biases into policymaking, and the overall reduction 

in the effectiveness of stunting reduction efforts. 

 To minimize these constraints, hybrid models merging K-Means with metaheuristic and evolutionary 

optimization strategies have been developed. Genetic Algorithms (GA), inspired by concepts of natural selection 

and evolutionary adaptation, are particularly promising in this setting [17]. A new development, the Dynamic 

Artificial Chromosomes Genetic Algorithm (DAC-GA), presents adaptive solutions for centroid initialization 

through dynamic chromosomal evolution. This method accelerates the global search process, minimizes the risk 

of premature convergence, and considerably improves clustering robustness. Prior applications of DAC-GA in 

health-related fields, like tuberculosis clustering and outbreak prediction, demonstrate its capacity to effectively 

manage complex, multidimensional datasets characterized by high variability.  

Nevertheless, research applying DAC-GA to stunting remains scarce, particularly in Indonesia, where 

geographical heterogeneity and regional inequities are especially apparent[18]. Against this setting, the present 

work tackles two key research gaps. First, it tries to extend the underexplored application of optimal spatial ML 

approaches for stunting study in Indonesia by building and testing a hybrid K-Means–DAC-GA model. Second, it 

intends to build a robust and fine-grained analytical framework capable of providing high-resolution stunting risk 

maps specific to the province of North Sumatra. By adopting this innovative analytical approach, the study not 

only helps to increasing scientific debate on spatial ML applications but also gives a practical decision-support 

tool for local governments and communities [19]. Importantly, this tool is designed to enhance community health 

autonomy by enabling stakeholders in North Sumatra to independently identify, evaluate, and resolve important 

health concerns. Through interventions that are evidence-based, participatory, and context-sensitive, this research 

emphasizes the transformative potential of digital health technologies in promoting sustainable and resilient public 

health systems [20]. 

2. RESEARCH METHODOLOGY 

The study follows a defined technique to analyze the performance of a hybrid clustering method that 

combines the K-Means algorithm with the Dynamic Artificial Chromosomes Genetic Algorithm (DAC-GA). The 

hybrid model is compared to the classic K-Means technique to test its capacity to increase clustering accuracy, 

stability, and spatial representation. To ensure clarity and rigor, the entire research design is separated into four 

phases, as indicated in Figure 1.  
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Figure 1. Hybrid DAC-GA K-Means Research Flow 

The first phase comprises data preprocessing, which includes data cleaning, transformation, and 

standardization to assure quality and consistency. The second step focuses on creating clustering models, utilizing 

both the regular K-Means and the proposed K-Means-DAC-GA hybrid technique. Next, a cluster validation phase 

assesses the quality and strength of the clustering results using relevant assessment measures. Finally, the data are 

translated into spatial representations of stunting risk, allowing for the discovery of geographic patterns and 

clusters with major public health implications. Overall, this method offers a strong workflow that promotes 

analytical reliability and deepens the relationship between computational methods and practical insights for spatial 

epidemiology. 

2.1 Datasets and Preprocessing Phase 

The initial part of the research focuses on preparing the input data through a series of refinement methods 

aimed at ensuring its quality and dependability for further analysis. This method involves resolving missing values, 

removing noise, and applying normalization techniques to normalize feature scales. Such preparation is necessary 

because clustering algorithms particularly distance-based techniques like K-Means are highly sensitive to scale 

fluctuations and the presence of outliers, which can distort clustering conclusions [21]. For this study, the dataset 

was compiled from three primary and authoritative sources: demographic and population statistics provided by the 

Central Bureau of Statistics (BPS), policy information derived from the 2023 Regional Medium-Term 

Development Plan (RPJMD) of North Sumatra, and health-related indicators, including stunting prevalence, 

obtained from the Ministry of Health of the Republic of Indonesia. Together, these sources gave comprehensive 

and dependable data to support the analysis. 

2.2 Model Creation 

In this stage, a dual-path experimental design conducts the clustering process. The first pathway uses the 

traditional K-Means algorithm as the baseline model for comparison. The second pathway combines K-Means 

with the Dynamic Artificial Chromosomes Genetic Algorithm (DAC-GA) to improve the clustering process. This 

design helps to systematically evaluate the performance of the hybrid model against the conventional K-Means 

method. 

2.2.1 K-Means (Baseline Model) 

The baseline model uses the K-Means algorithm, which divides the dataset into k clusters while 

minimizing variance within each cluster. The process starts with randomly choosing k centroids. It then moves 

through two main steps iteratively [20]. Given a dataset, 

𝐷 =  {𝑥1, 𝑥2, … , 𝑥𝑛}, 𝑥𝑖  ∈  ℝ𝑚 (1) 
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Each observation is allocated to the cluster with the closest centroid according to the Euclidean metric. 

The average of each cluster's currently assigned points is then used to recalculate its centroid. Until a convergence 

criterion is satisfied either when the centroid locations stabilize within a predetermined tolerance or when the 

objective function typically the within-cluster sum of squared distances can no longer be reduced these two steps 

are repeated. Stated differently, until stability is reached, the approach alternates between an assignment step and 

a centroid reestimation step. Formally, the goal of K-Means optimization is stated as [22]: 

𝑚𝑖𝑛𝐶 ∑ ∑ ‖𝑥 −  𝜇𝑖‖2

𝑥 ∈𝐶𝑖

𝑘

𝑖 =1

, (2) 

Where C = {C1, C2, … ,Ck} represents the set of clusters, and 𝜇i denotes the centroid of cluster 𝐶i. calculated as the 

mean of all data points assigned to that cluster. 

 The K-Means optimization process works in two main steps. First, in the assignment step, we allocate 

each data point xp to the cluster with the nearest centroid based on Euclidean distance: 

𝑐𝑝 = arg 
𝑚𝑖𝑛

𝑖 ∈ {1,…,𝑘}
‖𝑥𝑝 −  𝜇𝑖‖

2
, (3) 

where cp represents the cluster label of observation xp. Second, in the update step, the centroids are recalculated to 

reflect the new cluster memberships: 

𝜇𝑖 =  
1

|𝐶𝑖|
∑ 𝑥𝑝

𝑥 ∈ 𝐶𝑖

, (4) 

with |Ci| denoting the number of data points in cluster Ci. 

 The method iteratively repeats these two steps until convergence is achieved. Convergence is generally 

defined by the stabilizing of centroid positions, wherein subsequent updates yield negligible alterations in the 

cluster centers, or by the reduction of the objective function, particularly the within-cluster sum of squares 

(WCSS). In practical applications, convergence may also be assessed using specified stopping conditions, for a 

maximum iteration count or a tolerance level for centroid displacement. This recurrent refinement guarantees that 

the final clustering configuration reflects a locally optimal partition of the data, although it may not align with the 

global optimum due to the algorithm's sensitivity to initial centroid selection. The procedural flow of the typical 

K-Means algorithm is delineated in the pseudocode below, demonstrating the initialization, assignment, and update 

phases until the convergence requirements are met: 

Input: 

• Dataset 𝐷 =  {𝑥_1, 𝑥_2, … , 𝑥_𝑛 }, & 𝑥_𝑖  ∈  ℝ^𝑚  

• Number of clusters k 

Output: 

• Partition of data into clusters C = {C1, C2,..., Ck} 

• Final centroids 𝜇 = { μ1, μ2,…, μk} 

1: Initialize centroids μ1, μ2, …, μk by randomly selecting k points from X 

2: repeat 

3:     # Assignment Step 

4:     for each data point xp ∈ X do 

5:         Assign xp to the nearest centroid: 

6:             cp ← argmin_i || xp - μi ||² 

7:     end for 

8:      

9:     # Update Step 

10:    for each cluster Ci, i = 1, …, k do 

https://creativecommons.org/licenses/by/4.0/
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11:        Recalculate centroid μi: 

12:            μi ← (1 / |Ci|) * Σ (xp ∈ Ci) xp 

13:    end for 

14:     

15:    # Convergence Check 

16: until centroids μi stabilize or maximum iterations reached 

17: return final clusters C and centroids μ 

 Although the K-Means technique is widely known and commonly used and is computationally efficient, 

it comes with a number of acknowledged limitations. One of the key concerns is that K-Means is sensitive to the 

beginning position of the centroids, which might yield inconsistent results and unsatisfactory partitions. An 

additional difficulty with the K-Means algorithm is that it has no means of assisting a user determine the ideal 

number of clusters. Thus, the selection of clusters (k) will still be a challenge. Moreover, K-Means usually 

converge to the local minimum of the goal function and does not identify the global maximum. This is particularly 

problematic when doing clustering in the presence of noise or in high-dimensionality datasets [23], [24]. These 

shortcomings indicate to the requirement of applying an extra optimization strategy in the second experimental 

branch [25]. The purpose of the new optimization is to improve the centroid initialization, better support a global 

search, and overall provide more stable and consistent clustering conclusions. 

2.2.2 K-Means Optimization with the DAC-GA 

 The second part of the experimental design uses the Dynamic Artificial Chromosomes Genetic Algorithm 

(DAC-GA) as an optimization tool to improve the clustering process[26]. It specifically enhances how centroids 

are initialized in K-means. DAC-GA is an evolutionary computation method inspired by natural selection and 

adaptability. It builds on the traditional Genetic Algorithm (GA) by introducing chromosome structures that 

change during the search process. This adaptive feature helps the algorithm keep population diversity, prevent 

premature convergence, and balance exploration and exploitation of the solution space [27]. As a result, it 

addresses the limitations found in standard K-means and traditional GA approaches [28]. 

 In this framework, each candidate solution is represented as an artificial chromosome 𝑋 =  (𝑀, Σ), where 

𝑀 ∈ ℝk × d represents the matrix of centroids, and Σ ∈ ℝ>0
𝑘 × 𝑑 contains the mutation strengths associated with each 

gene. The objective function for assessing the quality of a chromosome is based on the within-cluster sum of 

squares (WCSS), also known as the sum of squared errors (SSE). This is defined as: 

𝐽(𝑀)  =  ∑ ∑ ‖𝑥𝑝  −  𝜇𝑖‖
2

   𝑥𝑝∈𝐶𝑖(𝑀)

𝑘

𝑖 = 1

, (5) 

Where each data point xp is assigned to the nearest centroid μi. For selection, DAC-GA uses fitness-proportionate 

sampling. In this method, probabilities are proportional to F(X) = 1 / (J(X) + ε), or tournament-based selection. 

This approach ensures that higher-quality solutions are more likely to survive. 

 Reproduction in DAC-GA occurs through recombination and mutation. In crossover, offspring centroids 

are created by linearly combining the centroids of two parents. Meanwhile, strategy parameters are updated using 

geometric averaging. Mutation follows a self-adaptive Gaussian process. In this process, both centroids and 

mutation strengths evolve based on: 

𝜎𝑖𝑙
′ = 𝜎𝑖𝑙𝑒𝑥𝑝(𝜏′𝑧 + 𝜏𝑧𝑖𝑙),    𝜇𝑖𝑙

′ = 𝜇𝑖𝑙 + 𝜎𝑖𝑙
′ ∙ 𝜖𝑖𝑙 , (6) 

where 𝑧, 𝑧𝑖𝑙 , 𝜖𝑖𝑙  ~ 𝒩(0,1), and 𝜏, 𝜏′ are global learning rates. A unique feature of DAC-GA is its dynamic 

adaptation rule. In this rule, mutation strengths Σ change based on search performance. This allows the method to 

balance exploration and exploitation of the solution space. 

Following the creation of offspring, the population is updated using an elitist replacement method that 

guarantees the survival of the best-performing solutions. The evolutionary cycle progresses until the maximum 

number of generations Tmax is reached or convergence is attained, characterized by minor improvement in the 

objective function across consecutive generations.The resulting solution 𝑋∗  =  (𝑀∗, Σ∗), spesifically the 

optimized centroid matrix M*, is then passed as the initialization stage for the K-Means clustering process. 

Through this integration, the hybrid DAC-GA and K-Means model is aimed to solve two major flaws 

of standard K-Means: sensitivity to initial centroid placement and vulnerability to local minima. This 
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methodological innovation offers more consistent, reliable, and interpretable clustering results, particularly in the 

context of geographic risk mapping for stunting prevalence. 

To operationalize the suggested methodology, the hybrid model utilizes DAC-GA as an optimization 

method for centroid creation, followed by the usual K-means clustering procedure. This combination ensures that 

the centroids utilized in the clustering step are optimized by evolutionary adaptation, thereby limiting the limits of 

standard K-means. For clarity and reproducibility, the procedural workflow of the hybrid DAC-GA and K-means 

method is detailed in the pseudocode below: 

Input: 

• Dataset X = {x1, x2,…, xn}, with n data points in ℝd 

• Number of clusters k 

• Population size P 

• Maximum generations Tmax 

Output: 

• Optimized centroid set M* = {μ1, μ2,…,μk} 

• Final clustering assignment of dataset X 

1:  Initialize a population of P chromosomes χ = (M, Σ),  

        where M is centroid matrix and Σ is mutation strength. 

2:  Evaluate fitness of each chromosome: 

        F(χ) = 1 / ( Σ Σ ||xp − μi||² + ε ) 

3:  repeat 

4:      # Selection 

5:      Select parents from population based on fitness. 

6: 

7:      # Crossover 

8:      For each pair of parents: 

9:          Generate offspring centroids: 

                M_off ← α·M_parent1 + (1−α)·M_parent2 

10:         Update mutation strength Σ_off accordingly. 

11: 

12:     # Mutation (self-adaptive) 

13:     For each gene μiℓ in chromosome: 

14:         σiℓ' ← σiℓ * exp(τ'·N(0,1) + τ·Niℓ(0,1)) 

15:         μiℓ' ← μiℓ + σiℓ'·N(0,1) 

16: 

17:     # Evaluation 

18:     Compute fitness of offspring F(χ_off). 

19: 

20:     # Replacement 

21:     Form new population using elitism. 

22: 

23:     # Dynamic Adaptation 

24:     Adjust Σ according to diversity and convergence level. 

25: 

26: until maximum generations Tmax reached 
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27: 

28: Select best chromosome χ* = (M*, Σ*). 

29: 

30: # K-Means Refinement 

31: Initialize centroids with M*. 

32: repeat 

33:     # Assignment Step 

34:     For each data point xp ∈ X: 

35:         Assign xp to nearest centroid μi: 

                cp ← argmin_i ||xp − μi||² 

36: 

37:     # Update Step 

38:     For each cluster Ci, i = 1,…,k: 

39:         μi ← (1 / |Ci|) * Σ (xp ∈ Ci) xp 

40: 

41: until centroids μi stabilize or maximum iterations reached 

42: 

43: Return final clusters C and optimized centroids M* 

The pseudocode demonstrates the initial setup of the population, evaluation of potential solutions, 

implementation of evolutionary operators, and the final refining of clusters using the optimized centroids. 

2.3 Model Evaluation 

 To thoroughly assess the validity of the clustering findings, three internal validation metrics were applied: 

the Sum of Squared Errors (SSE), the Davies–Bouldin Index (DBI), and the Silhouette Coefficient.  These 

indicators provide distinct viewpoints on cluster compactness, isolation, and assignment appropriateness, which 

are crucial for confirming the robustness of spatial stunting cluster analysis. 

2.3.1 Sum of Squared Errors (SSE) 

 The Sum of Squared Errors (SSE), commonly referred to as the Within-Cluster Sum of Squares (WCSS), 

analyzes cluster homogeneity by measuring the squared distance of each data point to its assigned centroid [22]. 

The formal expression is: 

𝑆𝑆𝐸 =  ∑  ∑ ‖𝜇𝑝  −  𝜇𝑖‖
2

𝑥𝑝 ∈ 𝐶𝑖

𝑘

𝑖 = 1

 (7) 

Where k is the number of clusters, xp denotes a data point in cluster Ci and μi represents the centroid of cluster Ci. 

A lower SSE value suggests tighter clusters and greater homogeneity within each group.  In the context of spatial 

stunting study, lower SSE shows that districts grouped together share very consistent prevalence rates and socio-

economic features.  However, SSE reduces monotonically as the number of clusters grows, making it necessary to 

match this measure with additional evaluation criteria or heuristic methods to prevent overestimating the ideal 

cluster count. 

2.3.2 Davies - Bouldin Index (DBI) 

 The DBI analyzes clustering performance by considering both intra-cluster scatter and inter-cluster 

separation [29]. It is defined as: 

𝐷𝐵𝐼 =  
1

𝑘
∑

𝑚𝑎𝑥

𝑗 ≠  1
(

𝑆𝑖  +  𝑆𝑗

𝑑(𝜇𝑖 , 𝜇𝑗)
)

𝑘

𝑖 = 1

 (8) 
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where 𝑆𝑖  =  
1

|𝐶𝑖|
∑ ‖𝑥𝑝  −  𝜇𝑖‖𝑥𝑝 ∈ 𝐶𝑖

 represents the average dispersion of cluster i, and 𝑑(𝜇𝑖 , 𝜇𝑗) is the Euclidean 

distance between centroids 𝜇𝑖 and 𝜇𝑗. 

 Lower DBI values indicate more compact and well-separated clusters. In spatial stunting analysis, a lower 

DBI suggests that regions in distinct clusters show clearly different epidemiological characteristics. This difference 

provides stronger evidence for region-specific intervention policies. However, DBI may be influenced by uneven 

cluster sizes, so it requires careful interpretation with contextual knowledge [30]. 

2.3.3 Silhouette Coefficient 

 The Silhouette Coefficient assesses how appropriately each data point is assigned to its cluster relative to 

other alternative clusters. It is calculated as [19], [31]: 

𝑠(𝑥𝑝)  =  
𝑏(𝑥𝑝) −  𝑎(𝑥𝑝)

𝑚𝑎𝑥{𝑎(𝑥𝑝), 𝑏(𝑥𝑝)}
 (9) 

where 𝑎(𝑥𝑝) is the average distance of data point xp to all other points in the same cluster, and 𝑏(𝑥𝑝) is the 

minimum average distance from xp to points in a different cluster. The overall silhouette score is obtained by 

averaging 𝑠(𝑥𝑝) across all data points. 

 Values vary from –1 to +1, with higher values suggest better-defined clusters. In spatial epidemiology, a 

high silhouette score suggests that districts are firmly connected with their allocated clusters, while lower scores 

highlight boundary zones where stunting prevalence may overlap between categories. This diagnostic capacity is 

particularly crucial for local governments, as transitional or uncertain areas may demand personalized policy 

responses rather than uniform measures. 

3. RESULT AND DISCUSSION 

This section delineates the experimental results derived from the implementation of both the conventional K-

Means algorithm and the proposed hybrid method, which integrates K-Means with a Dynamic Artificial 

Chromosome Genetic Algorithm (DAC-GA).  The analysis evaluates the efficacy of the algorithms in determining 

the appropriate number of clusters (k), compares the quality of the resultant clusters, and interprets their 

geographical distribution for stunting cases in North Sumatra.  The assessment is based on three primary metrics: 

the Elbow Method (SSE), Silhouette Score, and Davies-Bouldin Index (DBI), in addition to Execution Time and 

Spatial Visualization. 

3.1 Performance Analysis of the Baseline K-Means Algorithm 

 

Figure 2. Evaluation Metrics of K-Means for Different K Values 

Figure 1 depicts the efficacy of the K-Means clustering model across various k values by showcasing 

three evaluative dimensions: compactness, separation, and overall clustering quality. The initial graphic illustrates 

the progression of cluster compactness as the quantity of clusters rises, demonstrating a consistent enhancement 

with the introduction of additional partitions. The second graphic illustrates how well the clusters are separated, 

exhibiting sharper distinctions at lower cluster counts and a progressive reduction as the number climbs. 

Simultaneously, the third graphic illustrates the stability of cluster boundaries, where diminished values signify 

more dependable structures. Collectively, these visuals offer a summary of the clustering behavior across different 
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settings. They illustrate how augmenting the number of clusters affects the equilibrium between compactness and 

separation, while also indicating the range in which cluster quality is most constant. This visual evidence serves 

as the foundation for evaluating the quantitative facts offered in the ensuing table. 

Table 1. Summary of K-Means Result (k = 2 to k = 10) 

Number of Clusters (k) Time (s) SSE DBI Silhouette Score 

2 1.854508 1653.149229 0.744897 0.539733 

3 0.006997 1213.793528 0.857971 0.361179 

4 0.009023 1132.367455 1.023950 0.300367 

5 0.008425 993.111165 1.279199 0.150877 

6 0.010049 919.676259 1.141842 0.113342 

7 0.011009 804.601005 0.911717 0.123469 

8 0.007514 716.445699 1.242122 0.106540 

9 0.009998 660.584178 1.122229 0.110606 

10 0.010749 615.754706 1.126576 0.102144 

 Table 1 contains the detailed numerical values of the evaluation measures across multiple values of k. 

Consistent with the graphical results, the Sum of Squared Errors (SSE) reduces monotonically as the number of 

clusters grows, showing tighter within-cluster compactness but without necessarily enhancing interpretability. The 

Silhouette Score gets its highest value of 0.539 with k = 2, reinforcing that this configuration generates the most 

distinct and well-separated clusters. Similarly, the Davies–Bouldin Index (DBI) records its lowest value of 0.744 

at k = 2, further demonstrating the superiority of the two-cluster approach. While execution times vary significantly 

between different k, they remain within a fairly small range (milliseconds), demonstrating that computational 

performance is not a limiting constraint. Overall, the tabular evidence substantiates the conclusion drawn from the 

visual analysis, namely that k = 2 provides the ideal balance of compactness, separation, and efficiency for the 

given dataset. 

3.2 Performance Analysis of the Optimized K-Means Algorithm with DAC-GA 

 

 

Figure 3. Visualization of Clustering Results 

 The resulting cluster visualization, displayed in Figure 3, separates the dataset into two distinct groups 

depending on the best k. The scatterplot, constructed using the first two major components, displays how the 

algorithm isolates the data points into compact and clearly defined clusters. Cluster 0, displayed in blue, contains 

most of the observations with a fairly dense spatial distribution. In contrast, Cluster 1, shown in green, isolates a 

smaller group of data that significantly differs from the main cluster. This division reveals important structural 

variations within the data, which may relate to areas with different rates of stunting and socio-economic conditions. 

 The Dynamic Artificial Chromosomes Genetic Algorithm (DAC-GA) showed its effectiveness in 

determining the best number of clusters without needing extensive calculations for different values of k. Unlike 
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the standard K-Means method, which requires repeated assessments for each possible k, DAC-GA integrates the 

optimization process within the clustering framework. This leads to a faster convergence toward the best solution. 

As shown in Table 2, the algorithm found k = 2 to be the best cluster configuration in just 1.171677 seconds. This 

eliminates the need to test other cluster counts. This capability highlights DAC-GA's potential for working with 

high-dimensional and spatially varied datasets, where speed and reliability are crucial. 

Table 2. Optimized K-Means with DAC-GA Evaluation Result 

Number of Clusters (k) Time (s) SSE DBI Silhouette Score 

2 1.171677 1653.1492 0.7449 0.5397 

 Furthermore, the cluster quality evaluation verifies the suitability of the chosen configuration, with a Sum 

of Squared Error (SSE) of 1653.1492, a Davies–Bouldin Index (DBI) of 0.7449, and a Silhouette Score of 0.5397. 

These numbers collectively confirm that the clustering outcome generated by DAC-GA achieves a compromise 

between compactness and separation, demonstrating the robustness of the technique in capturing spatial 

inequalities in stunting. 

 

3.3 The Spatial Maps 

 
Figure 4. K-Means Spatial Cluster 

 
Figure 5. Optimized K-Means + DAC-GA Spatial Cluster 

Table 3. Distribution of Stunting by Both Study 

Cluster (Color) Category Districts/Cities 

Green Low Kota Medan, Deli Serdang 

Red High 

Langkat, Simalungun, Asahan, Kota Binjai, Kota Tanjung Balai, Kota 

Gunungsitoli, Tapanuli Utara, Tapanuli, Tengah, Tapanuli Selatan, Padang 

Lawas, Padang Lawas Utara, Mandailing Natal, Humbang Hasundutan, 

Pakpak Bharat, Labuhan Batu, Labuhan Batu Utara, Labuhan Batu Selatan, 

Toba, Samosir, Dairi, Karo, Serdang Bedagai, Tebing Tinggi, Batu Bara, 

Padang Sidempuan, Nias, Nias Utara, Nias Selatan, Nias Barat 

Both the K-Means and Optimized K-Means with DAC-GA methods produced the same spatial clustering 

results, as shown in the maps at Figure 4 and 5. Table 3 lists the cities and districts divided into low-risk stunting 

and high-risk stunting clusters. It confirms that in both methods, Kota Medan and Deli Serdang consistently fell 

into the low-risk cluster (green). In contrast, all other districts in North Sumatra were placed in the high-risk cluster 

(red). This highlights the uniqueness of Kota Medan and Deli Serdang, which have much lower stunting rates 

compared to the rest of the province. 
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The consistency between the Optimized K-Means with DAC-GA method, which finds the best cluster 

arrangement, and the standard K-Means approach provides solid support for the methods. Even though their 

computational processes differ, both approaches reached the same cluster. This shows that the division between 

low-risk and high-risk areas is not just a result of method choice, it reflects real differences in the spatial data. 

Academically, this result strengthens the trustworthiness and accuracy of the clustering findings. It shows 

that they are useful for planning spatial policies and directing focused stunting interventions within the province.  

From a policy view, identifying Kota Medan and Deli Serdang as low-risk areas, compared to most districts in the 

high-risk group, offers useful insights for the provincial government. The government can focus on targeted 

interventions and allocate resources to high-risk districts. Successful practices in low-risk areas may serve as 

models to replicate. This way, the spatial clustering results not only confirm the methodological framework but 

also provide clear guidance for speeding up stunting reduction efforts in North Sumatra. 

4. CONCLUSION 

This study shows that combining the Dynamic Artificial Chromosomes Genetic Algorithm (DAC-GA) 

with the K-Means method effectively analyzes the spatial patterns of stunting prevalence in North Sumatra. Both 

methods consistently identified Medan City and Deli Serdang as low-risk clusters, while other districts fell into 

the high-risk cluster. This confirms real spatial differences. Methodologically, DAC-GA can dynamically 

determine the number of clusters efficiently, converging at k=2 in just 1.171677 seconds without needing multiple 

testing scenarios. It also handles complex and varied health datasets effectively. Evaluation metrics further 

confirmed the strength of this approach, ensuring reliable clusters for practical interpretation. These findings offer 

valuable insights for stunting prevention programs. They allow for more targeted interventions in high-risk districts 

and provide lessons from low-risk areas. For future research, it is advised to include Principal Component Analysis 

(PCA) in the preprocessing stage. This can help reduce redundancy, minimize noise, improve efficiency, and 

clarify cluster formation as well as the understanding of spatial stunting risk patterns. 
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